Skip to main content

Polynomial Kernels for Weighted Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

Kernelization is a formalization of efficient preprocessing for \(\mathsf {NP}\)-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number n of items.

We answer both questions affirmatively by using an algorithm for compressing numbers due to Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and Végh (ICALP 2013) in the context of kernelization. We further illustrate its applicability by giving polynomial kernels also for weighted versions of several well-studied parameterized problems. Furthermore, when parameterized by the different item sizes we obtain a polynomial kernelization for Subset Sum and an exponential kernelization for Knapsack. Finally, we also obtain kernelization results for polynomial integer programs.

Supported by the Emmy Noether-program of the German Research Foundation (DFG), KR 4286/1, and ERC Starting Grant 306465 (BeyondWorstCase).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is usually called a (disjunctive) Turing kernelization.

References

  1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Fomin, F.V., Saurabh, S.: Open problems posed at WORKER 2010 (2010). http://fpt.wdfiles.com/local-files/open-problems/open-problems.pdf

  3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theoret. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlebík, M., Chlebíková, J.: Crown reductions for the minimum weighted vertex cover problem. Discrete Appl. Math. 156(3), 292–312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cygan, M., Fomin, F.V., Jansen, B.M.P., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Open problems for FPT school 2014 (2014). http://fptschool.mimuw.edu.pl/opl.pdf

  7. Cygan, M., Kowalik, L., Pilipczuk, M.: Open problems from workshop on kernels (2013). http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf

  8. Drucker, A.: New limits to classical and quantum instance compression. In: Proceedings of the FOCS 2012, pp. 609–618 (2012)

    Google Scholar 

  9. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. Theory Comput. Syst. 50(4), 675–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fellows, M.R., Guo, J., Marx, D., Saurabh, S.: Data reduction and problem kernels (dagstuhl seminar 12241). Dagstuhl Rep. 2(6), 26–50 (2012)

    Google Scholar 

  12. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Granot, F., Skorin-Kapov, J.: On simultaneous approximation in quadratic integer programming. Oper. Res. Lett. 8(5), 251–255 (1989)

    Article  MathSciNet  Google Scholar 

  14. Harnik, D., Naor, M.: On the compressibility of \({\sf NP}\) instances and cryptographic applications. SIAM J. Comput. 39(5), 1667–1713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kratsch, S.: On polynomial kernels for integer linear programs: covering, packing and feasibility. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 647–658. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Lenstra Jr, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marx, D., Végh, L.A.: Fixed-parameter algorithms for minimum cost edge-connectivity augmentation. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 721–732. Springer, Heidelberg (2013)

    Google Scholar 

  21. Nederlof, J., van Leeuwen, E.J., van der Zwaan, R.: Reducing a target interval to a few exact queries. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 718–727. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Etscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Etscheid, M., Kratsch, S., Mnich, M., Röglin, H. (2015). Polynomial Kernels for Weighted Problems. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics