Skip to main content

QMA with Subset State Witnesses

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

  • 941 Accesses

Abstract

The class QMA plays a fundamental role in quantum complexity theory and it has found surprising connections to condensed matter physics and in particular in the study of the minimum energy of quantum systems. In this paper, we further investigate the class QMA and its related class QCMA by asking what makes quantum witnesses potentially more powerful than classical ones. We provide a definition of a new class, SQMA, where we restrict the possible quantum witnesses to the “simpler” subset states, i.e. a uniform superposition over the elements of a subset of n-bit strings. Surprisingly, we prove that this class is equal to QMA, hence providing a new characterisation of the class QMA. We also describe a new complete problem for QMA and a stronger lower bound for the class \({\text {QMA}}_1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This polynomial needs to have degree at least that of m (see Theorem 3 for a formal statement).

References

  1. Aaronson, S.: On perfect completeness for QMA. Quantum Inf. Comput. 9, 81–89 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: The detectability lemma and quantum gap amplification. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 417–426. ACM, New York (2009)

    Google Scholar 

  3. Aharonov, D., Arad, I., Vidick, T.: Guest column: the quantum PCP conjecture. SIGACT News 44(2), 47–79 (2013)

    Article  MathSciNet  Google Scholar 

  4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blier, H., Tapp, A.: All languages in NP have very short Quantum proofs. In: Proceedings of the 2009 Third International Conference on Quantum, Nano and Micro Technologies, ICQNM 2009, pp. 34–37. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  7. Brandão, F.G.S.L., Harrow, A.W.: Product-state approximations to quantum ground states. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 871–880. ACM, New York (2013)

    Google Scholar 

  8. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the Third Annual ACM Symposium, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  9. Cubitt, T., Montanaro, A.: Complexity classification of local hamiltonian problems. arXiv.org e-Print quant-ph/1311.3161 (2013)

    Google Scholar 

  10. Gharibian, S., Sikora, J., Upadhyay, S.: QMA variants with polynomially many provers. Quantum Inf. Comput. 13(1–2), 135–157 (2013)

    MathSciNet  Google Scholar 

  11. Grilo, A.B., Kerenidis, I., Sikora, J.: QMA with subset state witnesses. CoRR, abs/1410.2882 (2014)

    Google Scholar 

  12. Hallgren, S., Nagaj, D., Narayanaswami, S.: The local hamiltonian problem on a line with eight states is QMA-complete. Quantum Info. Comput. 13(9–10), 721–750 (2013)

    MathSciNet  Google Scholar 

  13. Jain, R., Upadhyay, S., Watrous, J.: Two-message quantum interactive proofs are in PSPACE. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25–27, 2009, Atlanta, Georgia, USA, pp. 534–543. IEEE Computer Society (2009)

    Google Scholar 

  14. Jordan, S.P., Kobayashi, H., Nagaj, D., Nishimura, H.: Achieving perfect completeness in classical-witness quantum Merlin-Arthur proof systems. Quantum Info. Comput. 12(5–6), 461–471 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Inf. Comput. 3(3), 258–264 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Kitaev, A., Shen, A., Vyalyi, M.N.: Classical and quantum computation. Graduate studies in mathematics. American mathematical society, Providence (R.I.) (2002)

    Google Scholar 

  17. Kobayashi, H., Le Gall, F., Nishimura, H.: Stronger methods of making quantum interactive proofs perfectly complete. In: Kleinberg, R.D. (ed.) ITCS, pp. 329–352. ACM, New York (2013)

    Chapter  Google Scholar 

  18. Levin, L.A.: Universal sequential search problems. Probl. Inf. Transm. 9(3), 265–266 (1973)

    Google Scholar 

  19. Marriott, C., Watrous, J.: Quantum arthur-merlin games. Comput. Complex. 14, 122–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oliveira, R., Terhal, B.M.: The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Inf. Comput. 8(10), 0900–0924 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: FOCS, pp. 537–546. IEEE Computer Society (2000)

    Google Scholar 

  22. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7174–7201. Springer, New York (2009)

    Chapter  Google Scholar 

  23. Wocjan, P., Janzing, D., Beth, T.: Two qcma-complete problems. Quantum Inf. Comput. 3(6), 635–643 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge support from a Government of Canada NSERC Postdoctoral Fellowship, ANR RDAM (ANR-12-BS02-005), ERC QCC and FP7 QAlgo. Research at CQT at NUS is partially funded by the Singapore Ministry of Education and the National Research Foundation, also through the Tier 3 Grant “Random numbers from quantum processes,” (MOE2012-T3-1-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Bredariol Grilo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grilo, A.B., Kerenidis, I., Sikora, J. (2015). QMA with Subset State Witnesses. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics