Skip to main content

Reviews on Impact Assessments of Land-Use Change on Key Ecosystem Services

  • Chapter
  • First Online:

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

It is commonly acknowledged that land-use change (LUC) and climate change have exerted significant effects on ecosystem services which are essential and vital to human well-being. This chapter conducted a revisit to relevant researches on the impacts of LUC on human well-being via specifically altering the ecosystem provisioning services and climate regulation services. As to the issues related to ecosystem provisioning services, first, the explorations on the influences of LUC on ecosystem provisioning services were reviewed, including the researches on the influences of LUC on agro-ecosystem services and forest and/or grassland ecosystem services. Then, the quantitative identification of the impacts of LUC on ecosystem provisioning services was commented on. In light of enhanced observation and valuation methods, several approaches to ecosystem services and improved models for assessing those ecosystem services were analyzed. The major indicators used to uncover the influences of LUC on human well-being were summarized including the increase of inputs and the reduction of outputs in production and the augmented health risk induced by the irrational land uses. Finally, the research gaps were uncovered and several research directions to address these gaps were proposed. As to climate regulation services, the research efforts in the drivers of and their corresponding effects on climate regulation services are briefly identified. Then, we explicitly reviewed the researches on the effects of LUC and climate change on climate regulation services, especially focused on the certain methods and models used to quantify the effects on the major drivers of climate regulation services. After that, the effects of LUC and climate change on human well-being via climate regulation services were revisited and commented accordingly. Finally, we discussed the current research gaps and proposed some research prospects in future studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2(1):1–12

    Google Scholar 

  • Albani M, Medvigy D, Hurtt GC, Moorcroft PR (2006) The contributions of LUC, CO2 fertilization, and climate variability to the Eastern US carbon sink. Glob Change Biol 12(12):2370–2390

    Google Scholar 

  • Alcamo J, Van Vuuren D, Cramer W, Alder J, Bennett E, Carpenter S, Christensen V, Foley J, Maerker M, Masui T (2005) Changes in ecosystem services and their drivers across the scenarios. Ecosyst hum well-being 2:297–373

    Google Scholar 

  • Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH (2012) Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Clim Change 2(3):177–181

    Google Scholar 

  • Antrop M (2000) Changing patterns in the urbanized countryside of Western Europe. Landscape Ecol 15(3):257–270

    Google Scholar 

  • Arora VK, Boer GJ, Christian JR, Curry CL, Denman KL, Zahariev K, Flato GM, Scinocca JF, Merryfield WJ, Lee WG (2009) The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the CCCma earth system model. J Clim 22(22):6066–6088

    Google Scholar 

  • Ash N, Lucas N, Bubb P, Iceland C, Irwin F, Ranganathan J, Raudsepp-Hearne C (2008) Framing the link between development and ecosystem services. Ecosystem services: a guide for decision makers. World Resouces Institute, Washington

    Google Scholar 

  • Assessment, U. N. E (2011) The UK national ecosystem assessment: synthesis of the key findings. UNEP-WCMC Cambridge, UK

    Google Scholar 

  • Ayanaba A (1976) The effects of clearing and cropping on the organic reserves and biomass of tropical forest soils. Soil Biol Biochem 8(6):519–525

    Google Scholar 

  • Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, Lopez A, Elorza FJ, Ziv G, Acuna V, Schuhmacher M (2013) Ecosystem services in mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ 458:246–255

    Google Scholar 

  • Barančíková G, Halás J, Guttekova M, Makovnikova J, Novakova M, Skalský R, Tarasovičová Z (2010) Application of ROTHC model to predict soil organic carbon stock on agricultural soils of Slovakia. Soil Water Res 5(1):1–9

    Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408(6809):187–190

    Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387(6635):796–799

    Google Scholar 

  • Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29(2):293–301

    Google Scholar 

  • Bonan G (2008) Ecological climatology: concepts and applications, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718

    Google Scholar 

  • Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, pp 161–187

    Google Scholar 

  • Carpenter SR, Bennett EM, Peterson GD (2006) Scenarios for ecosystem services: an overview. Ecol Soc 11(1):29

    Google Scholar 

  • Caulfield LE, de Onis M, Blössner M, Black RE (2004) Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr 80(1):193–198

    Google Scholar 

  • Chappell NA, Chen YD, Suhaimi J, Bonell M (2008) Climate regulation of humid tropical hydrology, pp 172–177

    Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J Roy Meteorol Soc 101(428):193–202

    Google Scholar 

  • Chen X, Bai J, Li X, Luo G, Li J, Li BL (2013) Changes in land use/land cover and ecosystem services in central Asia during 1990–2009. Curr Opin Environ Sustain 5(1):116–127

    Google Scholar 

  • Chopra K, Leemans R, Kumar P, Simons H (2005) Ecosystems and human well-being: policy responses. Island Press, Washington

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Ecological Society of America, Washington

    Google Scholar 

  • Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA, Pejchar L, Ricketts TH, Salzman J, Shallenberger R (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7(1):21–28

    Google Scholar 

  • Dale VH, Polasky S (2007) Measures of the effects of agricultural practices on ecosystem services. Ecol Econ 64(2):286–296

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Google Scholar 

  • Dawson JJ, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382(2):165–190

    Google Scholar 

  • De Fries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob Biogeochem Cycles 13(3):803–815

    Google Scholar 

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Nat Acad Sci 99(22):14256–14261

    Google Scholar 

  • Deng X, Zhao C, Yan H (2013) Systematic modeling of impacts of land use and land cover changes on regional climate: a review. Adv Meteorol 2013:11

    Google Scholar 

  • DIAz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I (2007) Plant trait responses to grazing–a global synthesis. Glob Change Biol 13(2):313–341

    Google Scholar 

  • Dieye A, Roy D, Hanan N, Liu S, Hansen M, Toure A (2012) Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in senegal. Biogeosciences 9:631–648

    Google Scholar 

  • Dixon RK, Brown S, Houghton REA, Solomon A, Trexler M, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–189 (Washington)

    Google Scholar 

  • Dwyer JF, McPherson EG, Schroeder HW, Rowntree RA (1992) Assessing the benefits and costs of the urban forest. J Arboric 18:227

    Google Scholar 

  • Estoque RC, Murayama Y (2012) Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis. Appl Geogr 35(1):316–326

    Google Scholar 

  • Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11(10):1565–1576

    Google Scholar 

  • Fisher B, Turner K, Zylstra M, Brouwer R, de Groot R, Farber S, Ferraro P, Green R, Hadley D, Harlow J, Jefferiss P, Kirkby C, Morling P, Mowatt S, Naidoo R, Paavola J, Strassburg B, Yu D, Balmford A (2008) Ecosystem services and economic theory: integration for policy-relevant research. Ecol Appl 18(8):2050–2067

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Google Scholar 

  • Fowler D, Pilegaard K, Sutton M, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjørring JK (2009) Atmospheric composition change: ecosystems–atmosphere interactions. Atmos Environ 43(33):5193–5267

    Google Scholar 

  • Francaviglia R, Coleman K, Whitmore AP, Doro L, Urracci G, Rubino M, Ledda L (2012) Changes in soil organic carbon and climate change–application of the ROTHC model in agro-silvo-pastoral Mediterranean systems. Agric Syst 112:48–54

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353

    Google Scholar 

  • Galis A, Marcq C, Marlier D, Portetelle D, Van I, Beckers Y, Thewis A (2013) Comprehensive reviews in food science and food safety

    Google Scholar 

  • Gavier-Pizarro GI, Calamari NC, Thompson JJ, Canavelli SB, Solari LM, Decarre J, Goijman AP, Suarez RP, Bernardos JN, Zaccagnini ME (2012) Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric Ecosyst Environ 154:44–55

    Google Scholar 

  • Gedney N, Valdes PJ (2000) The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys Res Lett 27(19):3053–3056

    Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus Ser B Chem Phys Meteorol 55(2):378–390

    Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980—a net release of CO2 to the atmosphere. Ecol Monogr 53(3):235–262

    Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (2000) Changes in terrestrial carbon storage in the United States 2: the role of fire and fire management. Glob Ecol Biogeogr 9(2):145–170

    Google Scholar 

  • Houghton RA, Hackler JL, Cushman RM (2001) Carbon flux to the atmosphere from land-use changes: 1850–1990. Carbon Dioxide Information Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Howard PC (1995) The economics of protected areas in Uganda: costs, benefits and policy issues. University of Edinburgh, Edinburgh

    Google Scholar 

  • Ice GG, Stednick JD (2004) A century of forest and wildland watershed lessons

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Agenda 6(07):333

    Google Scholar 

  • Ise T, Moorcroft PR (2006) The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry 80(3):217–231

    Google Scholar 

  • Jaradat AA, Boody G (2012) Modeling agroecosystem services under simulated climate and land-use changes. Int Sch Res Not 2011

    Google Scholar 

  • Jenkinson D, Adams D, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351(6324):304–306

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Google Scholar 

  • Kimble JM, Follett RF, Cole CV, Lal R (1998) The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, X 157504112: 128

    Google Scholar 

  • Knorr W, Prentice I, House J, Holland E (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433(7023):298–301

    Google Scholar 

  • Kumar P (2010) Guidance manual for the valuation of regulating services, United Nations Environment Programme, Nairobi

    Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123(1):1–22

    Google Scholar 

  • Lal R, Follett RF, Stewart B, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172(12):943–956

    Google Scholar 

  • Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol Ind 11(2):676–687

    Google Scholar 

  • Leh MDK, Matlock MD, Cummings EC, Nalley LL (2013) Quantifying and mapping multiple ecosystem services change in West Africa. Agric Ecosyst Environ 165:6–18

    Google Scholar 

  • Levy PE, Friend AD, White A, Cannell MGR (2004) The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems. Clim Change 67(2–3):185–209

    Google Scholar 

  • Liu M, Tian H, Chen G, Ren W, Zhang C, Liu J (2008) Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–20001. JAWRA J Am Water Resour Assoc 44(5):1193–1207

    Google Scholar 

  • Lovelock JE, Kump LR (1994) Failure of climate regulation in a geophysiological model. Nature 369(6483):732–734

    Google Scholar 

  • Lu J, Sun G, McNulty SG, Amatya DM (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern United States1, Wiley Online Library, Hoboken

    Google Scholar 

  • Lugo AE, Brown S (1993) Management of tropical soils as sinks or sources of atmospheric carbon. Plant Soil 149(1):27–41

    Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15(1):183–206

    Google Scholar 

  • Melillo J, Borchers J, Chaney J (1995) Vegetation/ecosystem modeling and analysis project: comparing biogeography and geochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob Biogeochem Cycles 9(4)

    Google Scholar 

  • Metherell AK (1993) Century: soil organic matter model environment: technical documentation: agroecosystem version 4.0. Colorado State University, Colorado

    Google Scholar 

  • Nelson GC, Bennett E, Berhe AA, Cassman KG, DeFries R, Dietz T, Dobson A, Dobermann A, Janetos A, Levy M, Marco D, Nakićenović N, O’Neill B, Norgaard T, Petschel-Held G, Ojima D, Pingali P, Watson R, Zurek M (2005) Drivers of change in ecosystem condition and services in ecosystems and human well-being: scenarios: findings of the scenarios working group. Island Press, Washington

    Google Scholar 

  • Nelson GC, Bennett E, Berhe AA, Cassman K, DeFries RS, Dietz T, Dobermann A, Dobson A, Janetos A, Levy MA (2006) Anthropogenic drivers of ecosystem change: an overview. Ecol Soc 11(2)

    Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KM, Daily GC, Goldstein J, Kareiva PM (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

    Google Scholar 

  • Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 5(12):e14327

    Google Scholar 

  • Nilsson K, Nielsen TS (2011) Peri-urban land use relationships–strategies and sustainability assessment tools for urban-rural linkages. Chin Landscape Archit 27(186):12–17

    Google Scholar 

  • Nosetto MD, Jobbagy EG, Paruelo JM (2005) Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob Change Biol 11(7):1101–1117

    Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Oak Ridge National Lab, USA

    Google Scholar 

  • Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343(6253):51–53

    Google Scholar 

  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Google Scholar 

  • Patz J, Githeko A, McCarty J, Hussein S, Confalonieri U, De Wet N (2003) Climate change and infectious diseases. Clim change hum health: risks responses, pp 103–137

    Google Scholar 

  • Pereira E, Queiroz C, Pereira HM, Vicente L (2005) Ecosystem services and human well-being: a participatory study in a mountain community in Portugal. Ecol Soc 10(2):14

    Google Scholar 

  • Pete S, Mike A, Helaina B, Paul B, Chris E, Rosemary H, Simon GP, Timothy Q, Amanda T (2011) Regulating services. UNEP-WCMC, Cambridge

    Google Scholar 

  • Peters RL (1985) The greenhouse effect and nature reserves. Bioscience 35(11):707–717

    Google Scholar 

  • Piao SL, Friedlingstein P, Ciais P, Zhou LM, Chen AP (2006) Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys Res Lett 33(23)

    Google Scholar 

  • Polasky S, Nelson E, Pennington D, Johnson KA (2011) The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ Resour Econ 48(2):219–242

    Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans Roy Soc B-Biol Sci 365(1554):2959–2971

    Google Scholar 

  • Powers JS (2004) Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica. Ecosystems 7(2):134–146

    Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Bennett E (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci 107(11):5242–5247

    Google Scholar 

  • Reid W, Mooney H, Cropper A, Capistrano D, Carpenter S, Chopra K, Dasgupta P, Dietz T, Duraiappah A, Hassan R (2005) Ecosystems and human well-being: synthesis, MA (Millennium Ecosystem Assessment). Island Press, Washington

    Google Scholar 

  • Reidsma P, Tekelenburg T, van den Berg M, Alkemade R (2006) Impacts of land-use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agric Ecosyst Environ 114(1):86–102

    Google Scholar 

  • Reyers B, O’Farrell PJ, Cowling RM, Egoh BN, Le Maitre DC, Vlok JH (2009) Ecosystem services, land-cover change, and stakeholders: finding a sustainable foothold for a semiarid biodiversity hotspot

    Google Scholar 

  • Riitters KH, Wickham JD, O’Neill RV, Jones KB, Smith ER, Coulston JW, Wade TG, Smith JH (2002) Fragmentation of continental United States forests. Ecosystems 5(8):0815–0822

    Google Scholar 

  • Rodriguez JP, Beard TD, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11(1):28

    Google Scholar 

  • Rosenzweig C, Solecki WD, Parshall L, Chopping M, Pope G, Goldberg R (2005) Characterizing the urban heat island in current and future climates in New Jersey. Glob Environ Change Part B Environ Hazards 6(1):51–62

    Google Scholar 

  • Sanderman J, Amundson RG, Baldocchi DD (2003) Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Glob Biogeochem Cycles 17(2):1061

    Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337

    Google Scholar 

  • Scott NA, Tate KR, Giltrap DJ, Smith CT, Wilde RH, Newsome PFJ, Davis MR (2002) Monitoring land-use change effects on soil carbon in New Zealand: quantifying baseline soil carbon stocks. Environ Pollut 116:S167–S186

    Google Scholar 

  • Sehgal R (2010) Deforestation and avian infectious diseases. J Exp Biol 213(6):955–960

    Google Scholar 

  • Shi Q, Lin Y, Zhang E, Yan H, Zhan J (2013) Impacts of cultivated land reclamation on the climate and grain production in Northeast China in the future 30 years. Adv Meteorol 2013:8

    Google Scholar 

  • Shrestha B, Williams S, Easter M, Paustian K, Singh B (2009) Modeling soil organic carbon stocks and changes in a Nepalese watershed. Agric Ecosyst Environ 132(1):91–97

    Google Scholar 

  • Shukla J, Nobre C, Sellers P (1990) Amazon deforestation and climate change. Science 247(4948):1322–1325

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185

    Google Scholar 

  • Sivakumar MVK, Das HP, Brunini O (2005) Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. Clim Change 70(1–2):31–72

    Google Scholar 

  • Smith TM, Leemans R, Shugart HH (1992) Sensitivity of terrestrial carbon storage to CO2-induced climate change: comparison of four scenarios based on general circulation models. Clim Change 21(4):367–384

    Google Scholar 

  • Smith P, Smith J, Powlson D, McGill W, Arah J, Chertov O, Coleman K, Franko U, Frolking S, Jenkinson D (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81(1):153–225

    Google Scholar 

  • Snyder P, Delire C, Foley J (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23(3–4):279–302

    Google Scholar 

  • Solomon AM (1986) Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America. Oecologia 68(4):567–579

    Google Scholar 

  • Su SL, Xiao R, Jiang ZL, Zhang Y (2012) Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr 34:295–305

    Google Scholar 

  • Sun G, Zhou G, Zhang Z, Wei X, McNulty SG, Vose JM (2006) Potential water yield reduction due to forestation across China. J Hydrol 328(3):548–558

    Google Scholar 

  • Swift MJ, Izac AMN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric Ecosyst Environ 104(1):113–134

    Google Scholar 

  • Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64(2):245–252

    Google Scholar 

  • Tallis H, Polasky S (2009) Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann N Y Acad Sci 1162(1):265–283

    Google Scholar 

  • Turner WR, Brandon K, Brooks TM, Costanza R, Da Fonseca GA, Portela R (2007) Global conservation of biodiversity and ecosystem services. Bioscience 57(10):868–873

    Google Scholar 

  • Twine TE, Kucharik CJ, Foley JA (2004) Effects of land cover change on the energy and water balance of the mississippi river basin. J Hydrometeorology 5(4):640–655

    Google Scholar 

  • Vertessy RA, Watson FG, Sharon K (2001) Factors determining relations between stand age and catchment water balance in mountain ash forests. For Ecol Manage 143(1):13–26

    Google Scholar 

  • West PC, Narisma GT, Barford CC, Kucharik CJ, Foley JA (2010) An alternative approach for quantifying climate regulation by ecosystems. Front Ecol Environ 9(2):126–133

    Google Scholar 

  • Woodwell GM, Hobbie J, Houghton R, Melillo J, Moore B, Peterson B, Shaver G (1983) Global deforestation: contribution to atmospheric carbon dioxide. Science 222(4628):1081–1086

    Google Scholar 

  • Woomer PL, Tieszen LL, Tappan G, Toure A, Sall M (2004) Land use change and terrestrial carbon stocks in Senegal. J Arid Environ 59(3):625–642

    Google Scholar 

  • Xiao Y, Xie G, An K (2003) Economic value of ecosystem services in Mangcuo Lake drainage basin. Ying yong sheng tai xue bao = The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban 14(5):676–680

    Google Scholar 

  • Xie G, Xiao Y, Lu C (2006) Study on ecosystem services: progress, limitation and basic paradigm. J Plant Ecol 2:002

    Google Scholar 

  • Xu X, Liu W, Kiely G (2011) Modeling the change in soil organic carbon of grassland in response to climate change: effects of measured versus modelled carbon pools for initializing the rothamsted carbon model. Agric Ecosyst Environ 140(3):372–381

    Google Scholar 

  • Yang XL, Ren LL, Singh VP, Liu XF, Yuan F, Jiang SH, Yong B (2012) Impacts of land use and land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China. Hydrol Res 43(1–2):23–37

    Google Scholar 

  • Zhan J, Yan H, Chen B, Luo J, Shi N (2012) Decomposition analysis of the mechanism behind the spatial and temporal patterns of changes in carbon bio-sequestration in China. Energies 5(2):386–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzheng Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deng, X. et al. (2015). Reviews on Impact Assessments of Land-Use Change on Key Ecosystem Services. In: Zhan, J. (eds) Impacts of Land-use Change on Ecosystem Services. Springer Geography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48008-3_1

Download citation

Publish with us

Policies and ethics