Skip to main content

The Copahue Volcanic-Hydrothermal System and Applications for Volcanic Surveillance

  • Chapter
  • First Online:
Copahue Volcano

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

During the last two decades, Copahue and its active acidic crater lake have shown different magmatic, phreatomagmatic, and hydrothermal manifestations. Geochemical data of waters from Copahue springs, lakes and rivers provide new insights into the behavior of its volcano-hydrothermal system. Temporal variations in the chemical (major anions and cations) compositions, element fluxes, and isotopic fluctuations (δD and δ18O; stable Pb isotopes, 129I/127I, δ37Cl, δ7Li, δ34S) of surface waters from Copahue for the period 1997–2012 can be related to processes in the underlying hydrothermal system. The 2000 and 2012 eruptive periods and the 2004 thermal anomaly showed increases in SO4, Cl and F contents in the waters as a result of ascending magmatic fluids. The changing chemical compositions also showed evidence for enhanced water/rock interaction during these magmatic periods, with increased concentrations of the major rock forming elements such as Al, K and Mg. Soon after the magmatic events, the elemental fluxes from the hydrothermal system decreased strongly, especially for K and Al. The latter is related to a decrease in permeability in the system through crystallization of alunite. Stable isotopic data (δD and δ18O) indicate that the hydrothermal fluids consist of a mixture of meteoric and magmatic waters that are affected by evaporation and water/rock interaction processes. The δ7Li values, polythionate concentrations and water stable isotope ratios indicate that the hot spring on the flank of the crater does not carry simple seepage from the crater lake. The crater lake and hot spring are fed by different sections from the underlying hydrothermal system. Temperatures of ~260 °C in the deeper part of the volcano-hydrothermal reservoir were estimated based on δ34S values in sulfur and dissolved sulfate. The upper part of the system is possibly more dilute and cooler at ~175 °C, based on silica geothermometry. The presence of 129I in the hydrothermal fluids indicates that subducted sediment with organic matter is one source for the magmatic volatiles. Stable Pb isotope ratios showed that the acidic hydrothermal fluids are dissolving local host rocks from the Copahue volcano edifice. The pyroclastic material ejected during the eruptive events carried the hydrothermal alteration phases silica, jarosite, alunite, and anhydrite/gypsum; liquid and particulate native sulfur was also emitted in large quantities. The chemical composition of the Upper Rio Agrio is controlled by the emissions of the feeding volcanic hot springs and mixing with glacial melt water. The compositional evolution of the large Lake Caviahue reflects inputs from the Upper Rio Agrio and melt water dilution, as well as mineral precipitation from the lake waters. The Lower Rio Agrio had copious amounts of Fe-sulfates in the river bed since 2003, which started to disappear again during the period of the 2012 eruption. Monitoring of SO4/Cl, Mg/Cl and Al/Cl in the Upper Rio Agrio waters may constitute an efficient mode of volcanic surveillance, complementing the ongoing multidisciplinary volcano monitoring and forecasting at Copahue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agusto M (2011) Estudio geoquímico de los fluidos volcánicos e hidrotermales del Complejo Volcánico Copahue Caviahue y su aplicación para tareas de seguimiento. Ph.D. Thesis, Buenos Aires, Argentina, Universidad de Buenos Aires, pp 294

    Google Scholar 

  • Agusto M, Tassi F, Caselli A, Vaselli O, Rouwet D, Capaccioni B, ChiodiniG (2013a) Thermal and chemical changes in the crater lake of Copahue volcano (Argentina) prior to the December 2012 phreatomagmatic eruption. IAVCEI General Assembly 2013, Kagoshima Japan, pp 1019

    Google Scholar 

  • Agusto M, Tassi F, Caselli A, Vaselli O, Rouwet D, Capaccioni B, Caliro S, Chiodini G, Darrah T (2013b) Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina). J Volcanol Geoth Res 257:44–56

    Article  Google Scholar 

  • Agusto M, Tassi F, Caselli A, Vaselli O, dos Santos Afonso M (2012) Seguimiento geoquímico de las aguas ácidas del sistema volcán Copahue – Río Agrio: posible aplicación para la identificación de precursores eruptivos. Rev As Geol Arg 69(4):481–495

    Google Scholar 

  • Aiuppa A, Federico C, Paonita A, Pecoraino G, Valenza M (2002) S, Cl and F degassing as an indicator of volcanic dynamics: the 2001 eruption of Mount Etna. Geophys Res Lett 29. doi: 10.1029/2002GL0150322004

  • Alexander E (2014) Aqueous geochemistry of an active magmato-hydrothermal system: Copahue Volcano, Río Agrio, and Lake Caviahue, Neuquén, Argentina. BA Thesis Middletown, CT USA, Wesleyan University, pp 100

    Google Scholar 

  • AIC (2007) Autoridad Interjurisdiccional de las Cuencas de los ríos Limay, Neuquén y Negro. Datos meteorológicos de la región de Caviahue entre los años 2003 y 2007. Cipolletti, Río Negro, Informe Inédito, pp. 5

    Google Scholar 

  • Barnes JD, Sharp ZD, Fischer TP (2009) Variations in chlorine stable isotopes along the Central American volcanic front. Geochem Geophys Geosys 7:Q08015. doi:10.1029/2009GC002587

    Google Scholar 

  • Bermudez A, Delpino D (1995) Mapa de los peligros potenciales en el área del Volcán Copahue – sector Argentino. Volcanic Hazard Map. The Geological Survey of the Province of Neuquen, Argentina

    Google Scholar 

  • Boschetti T (2013) Oxygen isotope equilibrium in sulfatewater systems: a revision of geothermometric applications in low-enthalpy systems. J Geochem Explor 124:92–100

    Article  Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39(10):1299. doi:10.129/2003WR002086

    Google Scholar 

  • Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373

    Article  Google Scholar 

  • Caselli A, Agusto M, Fazio A (2005) Cambios térmicos y geoquímicos del lago cratérico del volcán Copahue (Neuquén): posibles variaciones cíclicas del sistema volcánico. XVI Congreso Geológico Argentino, La Plata, Argentina, pp 751–756

    Google Scholar 

  • Caselli A, Vélez ML, Agusto M, Forte P, Albite J, Daga R (2013) Erupción del volcán Copahue (Argentina): evolución, productos e impacto social y ambiental. Foro Internacional sobre Peligros Geológicos, Arequipa, Peru, pp 104–109

    Google Scholar 

  • Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic hydrothermal system. J Volcanol Geoth Res 97:1–30

    Article  Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:47–565

    Article  Google Scholar 

  • Christenson BW, Werner CA, Reyes AG, Sherburn S, Scott BJ, Miller C, Rosenburg MJ, Hurst AW, Britten K (2007) Hazards from hydrothermally sealed volcanic conduits. EOS 88(50):53–55

    Article  Google Scholar 

  • Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J Volcanol Geoth Res 191:15–32

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Craig H, Gordon LI, Horibe Y (1963) Isotopic exchange effects in the evaporation of water. J Geophys Res 68:5079–5087

    Article  Google Scholar 

  • Cronin SJ, Hodgson KA, Neall VE, Palmer AS, Lecointre JA (1997) 1995 Ruapehu lahars in relation to the late Holocene lahars of Whangaehu River. New Zealand. NZ J. Geol Geophys 40:507–520

    Article  Google Scholar 

  • Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58(11):2445–2460

    Article  Google Scholar 

  • Delmelle P, Bernard A (2000a) Volcanic lakes. Encyclopedia of Volcanology. Academic Press, pp 877–896

    Google Scholar 

  • Delmelle P, Bernard A (2000b) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geoth Res 97:55–75

    Article  Google Scholar 

  • Delmelle P, Bernard A, Kusakabe M, Fisher TP, Takano B (2000) Geochemistry of the magmatic hydrothermal system of Kawah Ijen volcano, east Java, Indonesia. J Volcanol Geoth Res 97:31–53

    Article  Google Scholar 

  • Delpino D, Bermudez A (1993) La Actividad del Volcan Copahue durante 1992: Erupcion con emisiones de azufre piroclastico, Provincia del Neuquen, Argentina. XII Congreso Geologico Argentino, Mendoza, Argentina, pp 292–301

    Google Scholar 

  • Delpino D, Bermúdez A (1995) Eruptions of pyroclastic sulfur at crater lake of Copahue Volcano, Argentina. International Union of Geodesy and Geophysics. XXI General Assembly, Boulder, USA, pp 128

    Google Scholar 

  • Delpino DH, Bermudez AM (2002) La erupción del volcán Copahue del año 2000. Impacto social y al medio natural. Provincia del Neuquen, Argentina. XV Congresso Geologico Argentina, El Calafate, Argentina

    Google Scholar 

  • Eggenkamp HG, Middelburg J, Kreulen R (1994) Preferential diffusion of 35Cl relative to 37Cl in sediments of Kau Bay, Halmahera, Indonesia. Chem Geol 116:317–325

    Article  Google Scholar 

  • Fazio A, Agusto M, Farías S, Caselli A (2008) Evaluación de posibles fases minerales en equilibrio en el sistema volcánico Copahue (Neuquén) y su vinculación con parámetros químicos. XVII Congreso Geológico Argentino. Jujuy. Argentina, pp 1343–1344

    Google Scholar 

  • Fehn U, Peters E, Tullai-Fitzpatrick S, Kubik P, Sharma P, Teng R, Gove H, Elmore D (1992) 129I and 36Cl concentrations in waters of the eastern Clear Lake area, California: residence times and source ages of hydrothermal fluids. Geochim Cosmochim Acta 56:2069–2079

    Google Scholar 

  • Fehn U, Snyder G, Varekamp JC (2002) Detection of recycled marine sediment components in crater lake fluids using 129I. J Volcanol Geoth Res 115:451–460

    Article  Google Scholar 

  • Fournier RO (2006) Hydrothermal systems and volcano geochemistry. In: Dzurisin D (ed) Volcano deformation. Springer, Berlin, pp 153–194

    Google Scholar 

  • Gammons C, Wood S, Pedrozo F, Varekamp J, Nelson B, Shope C, Baffico G (2005) Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222:249–267

    Article  Google Scholar 

  • Gat JR (1995) Stable isotopes of fresh and saline lakes. In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes. Springer, Berlin, pp 139–165

    Chapter  Google Scholar 

  • Gat JR, Levy Y (1978) Isotope hydrology of inland sabkhas in the Bardawil area, Sinai. Limnol Oceanogr 23(5):841–850

    Article  Google Scholar 

  • Gibson JJ, Edwards TW, Prowse TD (1999) Pan-derived isotopic composition of water vapour and its variability in northern Canada. J Hydrol 217:55–74

    Article  Google Scholar 

  • Giggenbach WF (1974) The chemistry of Crater Lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period. NZ J Sci 17:33–45

    Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa WF, Tilling (eds) Monitoring and mitigation of Volcano Hazards. Springer, Berlin, pp 222–256

    Google Scholar 

  • Giggenbach WF, Glover RB (1975) The use of chemical indicators in the surveillance of volcanic activity affecting the crater lake on Mt. Ruapehu. NZ Bull Volcanol 39:70–81

    Article  Google Scholar 

  • Giggenbach WF, Corrales Soto R (1992) Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste geothermal province, Costa Rica. Appl Geochem 7:309–332

    Article  Google Scholar 

  • GVN (2000a) Frequent Ash explosions and acidic mudflows starting on July 1. Bull Global Volcano Netw 25:6

    Google Scholar 

  • GVN (2000b) Continued ash explosions and tremor during August–October. Bull of Global Volcano Netw 25:9

    Google Scholar 

  • Healy J, Lloyd EF, Banwell CJ, Adams RD (1965) Volcanic eruption on Raoul Island, November 1964. Nature 205:743–745

    Google Scholar 

  • Kading T (2010) Natural pollutant attenuation by schwertmannite at Copahue Volcano, Argentina. M.A. Thesis, Wesleyan University, Middletown, CT, USA, p 247

    Google Scholar 

  • Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotope effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geoth Res 97:287–308

    Article  Google Scholar 

  • Liebscher A, Barnes JD, Sharp ZD (2006) Chlorine isotope vapor–liquid fractionation during experimental fluid-phase separation at 400 C/23 MPa to 450 C/42 MPa. Chem Geol 234:340–345

    Article  Google Scholar 

  • Martini M (1989) The forecasting significance of chemical indicator in areas of quiescent volcanism: examples from Vulcano and Phlegrean Fields (Italy). In: Latter JH (ed) Volcanic hazard. Springer, Berlin, pp 372–383

    Chapter  Google Scholar 

  • Martini M (1993) Gases Volcánicos. In: Martí J, Araña V (eds) La volcanología actual. Nuevas Tendencias. Consejo Superior de Investigaciones Científicas, España, pp 387–444

    Google Scholar 

  • Martini M, Giannini L, Buccianti A, Prati F, Cellini Legittimo P, Iozzelli P, Capaccioni B (1991) 1980–1990: ten years of geochemical investigation at Phlegrean Fields (Italy). J Volcanol Geoth Res 48:161–171

    Article  Google Scholar 

  • Mas L, Mas G, Bengochea L (2000) Heatflow of Copahue geothermal field, its relation with tectonic scheme. In: Proceedings of world geothermal congress, Tohoku, Japan, pp 1419–1424

    Google Scholar 

  • Mayr C, Lu A, Stichler W, Trimborn P, Ercolano B, Oliva G, Ohlendorf C, Soto J, Fey M, Haberzettl T, Janssen S, Scha F, Schleser GH, Wille M, Zolitschka (2007) Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H). J Hydrol 334:53–63

    Google Scholar 

  • Morrissey M, Gisler G, Weaver R, Gittings M (2010) Numerical model of crater lake eruptions. Bull Volcanol 72:1169–1178

    Article  Google Scholar 

  • Naranjo JA, Polanco E (2004) The 2000 AD eruption of Copahue Volcano, Southern Andes. Rev Geol Chile 31(2):279–292

    Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane Volcano, Japan: implications for the evolution of the magmatic-hydrothermal system. J Volcanol Geoth Res 178:131–144

    Article  Google Scholar 

  • Oppenheimer C (1992) Sulphur eruptions at Volcán Poás, Costa Rica. J Volcanol Geoth Res 49:1–21

    Article  Google Scholar 

  • Ouimette AP (2000) Hydrothermal processes at an active volcano, Copahue, Argentina. M.A. Thesis, Wesleyan University, Middletown, CT, USA, pp 220

    Google Scholar 

  • Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clays. Geochim Cosmochim Acta 51:2319–2323

    Article  Google Scholar 

  • Panarello HO (2002) Características isotópicas y termodinámicas de reservorio del campo geotérmico Copahue-Caviahue, provincia del Neuquén. Rev As Geol Arg 57(2):182–194

    Google Scholar 

  • Parker S, Gammons C, Pedrozo F, Wood S (2008) Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. J Volcanol Geotherm Res 178:213–223

    Article  Google Scholar 

  • Pasternack G, Varekamp J (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:528–538

    Article  Google Scholar 

  • Pedrozo F, Temporetti P, Beamud G, Diaz M (2008) Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina. J Volcanol Geoth Res 178:205–212

    Article  Google Scholar 

  • Rapacioli R (1985) Lake Caviahue and its basin. Tech. Report, EPAS Gov. Office, Province of Neuquen, Argentina, pp. 1–72

    Google Scholar 

  • Rouwet D, Ohba T (2015) Isotope fractionation and HCl partitioning during evaporative degassing from active crater lakes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg, pp 179–200

    Google Scholar 

  • Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes. A generalized box model for active crater lake. Ann Geophys 54(2):161–173

    Google Scholar 

  • Rowe GL Jr, Brantley SL, Fernandez M, Fernandez JF, Borgia A, Barquero J (1992a) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geoth. Res 49:23–51

    Article  Google Scholar 

  • Rowe GL Jr, Ohsawa S, Takano B, Brantley SL, Fernandez JF, Barquero J (1992b) Using crater lake chemistry to predict volcanic activity at Poás volcano, Costa Rica. Bull Volcanol 54:494–503

    Article  Google Scholar 

  • Seal RR, Alpers CN, Rye RO (2000) Stable isotope systematics of sulfate minerals. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals—crystallography: geochemistry and environmental significance, pp 541–602

    Google Scholar 

  • Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Article  Google Scholar 

  • Stoibert J, Rose W (1970) The geochemistry of Central-American volcanic gas condensates. Geol Soc Amer Bull 81:2891–2912

    Article  Google Scholar 

  • Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geoth Res 108:303–341

    Article  Google Scholar 

  • Takano B, Watanuki K (1989) Monitoring of volcanic eruptions at Yugama crater lake by aqueous sulfur oxyanions. J Volcanol Geoth Res 40:71–87

    Article  Google Scholar 

  • Takano B, Ohsawa S, Glover RB (1994a) Surveillance ofRuapehu Crater Lake, New Zealand, by aqueous polythionates. J Volcanol Geoth Res 60:29–57

    Article  Google Scholar 

  • Takano B, Saitoh H, Takano E (1994b) Geochemical implications of subaqueous molten at Yugama crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216

    Article  Google Scholar 

  • Taran YA, Pokrovsky BG, Dubik YM (1989) Isotopic composition and origin of water from andesitic magmas. Dokl (Trans) Ac Sci USSR 304:440–443

    Google Scholar 

  • Tassi F, Vaselli O, Capaccioni B, Giolito C, Duarte E, Fernández E, Minissale A, Magro G (2005) The hydrothermal-volcanic system of Rincon de la Vieja volcano (Costa Rica): a combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J Volcanol Geoth Res 148:315–333

    Article  Google Scholar 

  • Tassi F, Vaselli O, Fernández E, Duarte E, Martínez M, Delgado-Huertas A, Bergamaschi F (2009) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnolo 68(2):193–205

    Article  Google Scholar 

  • Tonani F (1970) Geochemical methods of exploration for geothermal energy. Geothermics 2:492–515

    Article  Google Scholar 

  • van Hinsberg V, Berlo K, Sumarti S, van Bergen M, Williams-Jones E (2010) Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: II Metasomatic imprint and element fluxes. J Volcanol Geoth Res 196:169–184

    Article  Google Scholar 

  • Varekamp J (2003) Lake contamination models: evolution towards steady state in stratified lakes. J Limnol 62(1):67–72

    Article  Google Scholar 

  • Varekamp J (2008) The acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. J Volcanol Geoth Res 178:184–196

    Article  Google Scholar 

  • Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes: examples from Indonesia. J Volcanol Geoth Res 97:309–327

    Article  Google Scholar 

  • Varekamp J, Pasternack G, Rowe G (2000) Volcanic lake systematics. II. chemical constraints. J Volcanol Geotherm Res 97:161–179

    Article  Google Scholar 

  • Varekamp J, Ouimette A, Herman S, Bermudez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a ‘‘beehive” volcano in turmoil. Geology 29:1059–1062

    Article  Google Scholar 

  • Varekamp J, Ouimette A, Kreulen R (2004) The magmato-hydrothermal system of Copahue volcano, Argentina. In: Wanty RB, Seal II RB (eds) Water–rock interaction 11, vol 1. Balkema Publishers, Leiden, pp 215–218

    Google Scholar 

  • Varekamp J, Maarten de Moor J, Merrill M, Colvin A, Goss A, Vroon P, Hilton D (2006) The geochemistry and isotopic characteristics of the Caviahue Copahue volcanic complex, Province of Neuquen, Argentina. Geol Soc Am 407:317–342

    Google Scholar 

  • Varekamp  J, Ouimette A, Herman  S, Flynn K, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl. Geochem 24:208–220

    Google Scholar 

  • Varekamp J (2015) The chemical composition and evolution of volcanic lakes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg, pp 93–123

    Google Scholar 

  • Vaselli O, Tassi F, Duarte E, Fernández E, Poreda R, Delgado-Huertas A (2010) Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bull Volcanol 72:397–410

    Article  Google Scholar 

  • Velez ML, Euillades P, Caselli A, Blanco M, Martinez Diaz J (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J. Volcanol. Geoth. Res 202:117–126

    Google Scholar 

  • White WM (2013) Geochemistry. Oxford, UK, Blackwell-Wiley, p 672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agusto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agusto, M., Varekamp, J. (2016). The Copahue Volcanic-Hydrothermal System and Applications for Volcanic Surveillance. In: Tassi, F., Vaselli, O., Caselli, A. (eds) Copahue Volcano. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48005-2_9

Download citation

Publish with us

Policies and ethics