Skip to main content

Geochemistry of the Magmatic-Hydrothermal Fluid Reservoir of Copahue Volcano (Argentina): Insights from the Chemical and Isotopic Features of Fumarolic Discharges

  • Chapter
  • First Online:
Copahue Volcano

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

In this chapter the chemical (inorganic and organic) and isotopic compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of gas discharges, collected during 6 campaings carried out from 1976 to 2012, located at the foot of Copahue volcano are presented and discussed. Gas composition is typical of hydrothermal fluids from volcanic areas, since it consists of dominant CO2 and relatively high concentrations of H2S, H2, CH4 and N2. The helium isotopic ratios are the highest ones (R/Ra up to 7.94) observed in whole South America continent. This feature is not common for gases from a classic arc-like setting, and is possibly related to an extensional regime subdued to asthenospheric thinning. The CO2/3He ratios (from 1.4 to 8.8 × 109), slightly exceeding that of MORB gases, and the δ15N values (+1.7 to +5.5 ‰ vs. air) point to the occurrence of an additional crustal source for CO2 and N2. Gas discharges of the northern sector of the volcanic edifice are likely produced by mixing of hydrothermal gases with fluids from a shallow source permeating through the local fault systems. Gas geothermometry based on chemical reactions characterized by slow kinetics, such as those involving the CO\([{\rm{log}}\left( {{{\rm{X}}_{{{\rm{H}}_{\rm{2}}}}}/{{\rm{X}}_{{{\rm{H}}_{\rm{2}}}{\rm{O}}}}} \right){\rm{ }} = - {\rm{2}}.{\rm{8}})]\) 2-CH4 redox pair, are quenched at temperatures of ~260 °C and redox conditions consistent with those measured in the geothermal wells. On the contrary, the C3H6-C3H8 pair, H2 and CO tend to re-adjust at decreasing temperatures and more oxidizing conditions \([{\rm{log}}\left( {{{\rm{X}}_{{{\rm{H}}_{\rm{2}}}}}/{{\rm{X}}_{{{\rm{H}}_{\rm{2}}}{\rm{O}}}}} \right){\rm{ }} \le - {\rm{3}}.{\rm{4}}]\) in the uprising vapor phase. The hydrothermal reservoir is mainly recharged by meteoric water whose isotopic signature is modified by water-rock interactions. The N2/He ratios measured in 2006–2007 were significantly lower than those of 2012, possibly due to variable input of N2-bearing species from sediments interacting with the magmatic source. Considering that the R/Ra values of the 2006–2007 period were significantly higher than those measured in 2012, such compositional variation may also be explained by the injection of fresh N2− and 3He-rich magma that triggered the 2000 eruption. This hypothesis, although speculative since no geochemical data of fumaroles are avalaible from 1997 to 2006, implies that a geochemical monitoring of inert gas compounds discharged from the hydrothermal emissions could be used to detect the occurrence at depth of injections of new magma batches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera F, Tassi F, Darrah T, Moune S, Vaselli O (2012) Geochemical model of a magmatic-hydrothermal system at the Lastarria volcano, northern Chile. Bull Volcanol 74:119–134

    Article  Google Scholar 

  • Agusto M (2011) Estudio geoquímico de los fluidos volcánicos e hidrotermales del Complejo Volcánico Copahue Caviahue y su aplicación para tareas de seguimiento. Ph.D. Thesis, Universidad de Buenos Aires, p 270

    Google Scholar 

  • Agusto M, Caselli A, Tassi F, Dos Santos Alfonso M, Vaselli O (2012) Seguimiento geoquimico de las aguas acidas del sistema volcan Copahue—Rio Agrio: posible aplicacion para la identificacion de precursores eruptivos. Rev As Geol Arg 689(4):481–495 (in Spanish)

    Google Scholar 

  • Agusto M, Tassi F, Caselli AT, Vaselli O, Rouwet D, Capaccioni B, Caliro S, Chiodini G, Darrah T (2013) Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina). J Volcanol Geotherm Res 257:44–56

    Article  Google Scholar 

  • Anderson RB (1984) The Fischer-Tropsch synthesis. Academic Press, New York

    Google Scholar 

  • Bermúdez A, Delpino D, López Escobar L (2002) Caracterización geoquímica de lavas y piroclastos holocenos del volcán Copahue, incluyendo los originados en la erupción del año 2000. Comparación con otros volcanes de la Zona Volcánica Sur de los Andes. XV Congreso Geológico Argentino, Calafate, Argentina, pp 377–382

    Google Scholar 

  • Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of “popping rock’’: implications for primordial noble gases in earth. Science 276:568–571

    Article  Google Scholar 

  • Capaccioni B, Mangani F (2001) Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett 188:543–555

    Article  Google Scholar 

  • Capaccioni B, Martini M, Mangani F (1995) Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bull Volcanol 56:593–600

    Article  Google Scholar 

  • Capaccioni B, Taran Y, Tassi F, Vaselli O, Mangani F, Macias JL (2004) Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). Chem Geol 20:81–96

    Article  Google Scholar 

  • Capaccioni B, Aguilera F, Tassi F, Vaselli O (2011) Geochemistry of gas emissions from Tacora volcano (northern Chile): evidences of magmatic fluid input into a hydrothermal reservoir. J Volcanol Geotherm Res 208:77–85

    Article  Google Scholar 

  • Chiodini G, Marini L (1998) Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim Cosmochim Acta 62:2673–2687

    Article  Google Scholar 

  • Chiodini G, Cioni R, Marini L (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl Geochem 8(4):357–371

    Article  Google Scholar 

  • Chiodini G, Avino R, Brombach T, Caliro S, Cardellini C, de Vita S, Frondini F, Granirei D, Marotta E, Ventura G (2004) Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J Volcanol Geotherm Res 133:291–309

    Article  Google Scholar 

  • Chiodini G, Caliro S, Lowenstern JB, Evans WC, Bergfeld D, Tassi F, Tedesco D (2012) Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochim Cosmochim Acta 89:265–278

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • D’Amore F, Panichi C (1980) Evaluation of deep temperature of hydrothermal systems by a new gas-geothermometer. Geochim Cosmochim Acta 44:549–556

    Article  Google Scholar 

  • D’Amore F, Sierra JL, Panarello H (1988) Informe Avance del Contrato de Investigación OIEA N. 3988/IG (in Spanish)

    Google Scholar 

  • Darling WG (1998) Hydrothermal hydrocarbons gases: 1. Genesis and Geothermometry. Appl Geochem 13:815–824

    Article  Google Scholar 

  • Delpino D, Bermúdez A (1993) La actividad del volcán Copahue durante 1992. Erupción con emisiones de azufre piroclástico. Provincia de Neuquen, Argentina. XII Congreso Geológico Argentino, Mendoza, Argentina, pp 292–301

    Google Scholar 

  • Delpino D, Bermúdez A (2002) La erupción del volcán Copahue del año 2000. Impacto social y al medio natural. Provincia del Neuquén. Argentina. XIII Congreso Geológico Argentino, Buenos Aires, Argentina, pp 365–370

    Google Scholar 

  • Des Marais DJ, Donchin JH, Truesdell AH, Nehring NL (1981) Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature 292:826–828

    Article  Google Scholar 

  • Elkins LJ, Fischer TP, Hilton DR, Sharp ZP, McKnight S, Walker J (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim Cosmochim Acta 70:5215–5235

    Article  Google Scholar 

  • Fehn U, Snyder GT, Varekamp JC (2002) Detection of recycled marine sediment components in crater lake fluids using 129I. J Volcanol Geotherm Res 115:451–460

    Article  Google Scholar 

  • Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Article  Google Scholar 

  • Fiebig J, Woodland A, D’Alessandro W, Puttmann W (2009) Excess methane in continental hydrothermal emissions is abiogenic. Geology 37:495–498

    Article  Google Scholar 

  • Fischer F, Tropsch H (1926) Die Erodölsynthese bei gewöhnlichem druck aus den vergangsprodukten der kohlen. Brennstoff-Chemie 7:97–116

    Google Scholar 

  • Fisher T, Arehart G, Sturchio N, Williams S (1996) The relationship between fumarole gas composition and eruptive activity at Galeras Volcano. Colombia Geol 24(6):531–534

    Google Scholar 

  • Fischer T, Sturchio N, Stix J, Arehart G, Counce D, Williams S (1997) The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano. Colombia J Volcanol Geotherm Res 77:229–253

    Article  Google Scholar 

  • Fischer TP, Giggenbach WF, Sano Y, Williams SN (1998) Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet Sci Lett 160:81–96

    Article  Google Scholar 

  • Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American Margin. Science 297:1154–1157

    Article  Google Scholar 

  • Folguera A, Introcaso A, Giménez M, Ruiz F, Martinez P, Tunstall C, García Morabito E, Ramos VA (2007) Crustal attenuation in the Sourthern Andean retroarc (38°-39°30’ S) determined from tectonic and gravimetric studies: The Lonco-Luán asthenospheric anomaly. Tectonophysics 239:129–147

    Article  Google Scholar 

  • Fujita T, Abe M, Yamada M, Nakanishi S, Tokada N (1996) Feasibility study of Copahue geothermal development project. Argentina. J Jap Geotherm En Ass 33(1):39–55

    Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765

    Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. Application of geochemistry in geothermal reservoir development. UNITAR, New York, pp 253–273

    Google Scholar 

  • Giggenbach WF (1992a) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113(4):495–510

    Article  Google Scholar 

  • Giggenbach WF (1992b) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Final proceedings of international symposium. Water-Rock Interaction, WRI-8, pp 873–878

    Google Scholar 

  • Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazard. Springer, Berlin, pp 222–256

    Google Scholar 

  • Giggenbach WF (1997) Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim Cosmochim Acta 61:3763–3785

    Article  Google Scholar 

  • Giggenbach WF, Poreda RJ (1993) Helium isotopic and chemical composition of gases from volcanic-hydrothermal systems in the Philippines. Geothermics 22:369–380

    Article  Google Scholar 

  • Giggenbach WF, Sano Y, Wakita H (1993) Isotopic composition of helium, CO2, and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim Cosmochim Acta 57:3427–3455

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of midocean ridge and ocean island basalts: characterization of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, Reviews in mineralogy and geochemistry. Society of America, Washington, DC., vol 47, pp 247–317

    Google Scholar 

  • Hilton DR, Hammerschmidt K, Teufel S, Friedrichsen H (1993) Helium isotope characteristics of Andean geothermal fluids and lavas. Earth Planet Sci Lett 120:265–282

    Article  Google Scholar 

  • Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones, in noble gases. In: Procelli D, Ballentine CJ, Wieler R (eds) Cosmochemistry and Geochemistry, Mineral. Society of America, Washington D. C., vol 9, pp 319–370

    Google Scholar 

  • Hoke L, Lamb S (2007) Cenozoic behind-arc volcanism in the Bolivian Andes, SouthAmerica: implications for mantle melt generation and lithospheric structure. J Geol Soc Lond 164:795–814

    Article  Google Scholar 

  • Jenden PD, Kaplan IR, Poreda RJ, Craig H (1988) Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon, and nitrogen isotope ratios. Geochim Cosmochim Acta 52:851–861

    Article  Google Scholar 

  • JICA (Japan International Cooperation Agency) (1992) The feasibility study on the northern Neuquén geothermal development project. Ente Provincial de Energía de la Provincial del Neuquén, Argentina, p 89

    Google Scholar 

  • Jurío RL (1977) Características geoquímicas de los fluidos termales de Copahue (Neuquén—Argentina). Principales implicancias geotérmicas. Minería 172:1–11 (in Spanish)

    Google Scholar 

  • Kennedy BM, Lynch MA, Reynolds JH, Smith SP (1985) Intensive sampling of noble gases in fluids at Yellowstone: i early overview of the data; regional patterns. Geochim Cosmochim Acta 49:1251–1261

    Article  Google Scholar 

  • Li L, Sadofsky SJ, Bebout GE (2003) Carbon and nitrogen input fluxes in subduction sediments at the Izu-Bonin and Central America convergentmargins. EOS. Transact Am Geophys Union 84(46) (FallMeet. Suppl., Abstract T32A-0908)

    Google Scholar 

  • Linares E, Ostera HA, Mas LC (1999) Cronología K-Ar del Complejo Efusivo Copahue-Caviahue, Provincia del Neuquén. Rev Assoc Geol Arg 54(3):240–247

    Google Scholar 

  • Lux G (1987) The behavior of noble gases in silicate liquids: solution, diffusion, bubbles, and surface effects, with applications to natural samples. Geochim Cosmochim Acta 51:1549–1560

    Article  Google Scholar 

  • Mango FD (2000) The origin of light hydrocarbons. Geochim Cosmochim Acta 64:1265–1277

    Article  Google Scholar 

  • Martini M, Bermúdez A, Delfino D, Giannini L (1997) The thermal manifestation of Copahue volcano area. Final Proc. VIII Congreso Geológico Chileno, Antofagasta, Chile, pp 352–356

    Google Scholar 

  • Marty B (1995) Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts. Nature 377:326–328

    Google Scholar 

  • Marty B, Jambon A (1987) C/3He in volatile fluxes from the solid earth: implications for carbon geodynamics. Earth Planet Sci Lett 83:16–26

    Article  Google Scholar 

  • Marty B, Dauphas N (2003) The nitrogen record of crust–mantle interaction and mantle convection from Archean to present. Earth Planet Sci Lett 206:397–410

    Article  Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, N, C, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633

    Article  Google Scholar 

  • Mas GR, Mas LC, Bengochea L (1996) Alteración ácido-sulfática en el Campo Geotérmico Copahue, Provincia del Neuquén. Rev Asoc Geol Arg 51(1):78–86

    Google Scholar 

  • Mas LC, Mas GR, Bengochea L (2000) Heatflow of Copahue geothermal field, its relation with tectonic scheme. Final Proc World Geothermal Congress, Tohoku, Japan, pp 1419–1424

    Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    Article  Google Scholar 

  • Naranjo JA, Polanco E (2004) The 2000 AD eruption of Copahue Volcano. Southern Andes Rev Geol Chile 31(2):279–292

    Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Panarello HO (2002) Características isotópicas y termodinámicas de reservorio del campo geotérmico Copahue-Caviahue, provincia del Neuquén. Rev As Geol Arg 57(2):182–194

    Google Scholar 

  • Panarello HO, Sierra JL, Gingins MO, Levin M, Albero MC (1986) Estudio geoquímico e isotópico de los sistemas geotermales de la Provincia del Neuquén, República Argentina, primera parte: área Copahue. Informe anual de avance del contrato OIEA N. 3988 IG (B) (in spanish)

    Google Scholar 

  • Panarello HO, Levin M, Albero MC, Sierra JL, Gingins MO (1988) Isotopic and geochemical study of the vapour dominated geothermal field of Copahue (Neuquén, Argentina). Rev Brasil Geofís 5(2):275–282

    Google Scholar 

  • Parker SR, Gammons CH, Pedrozo FL, Wood SA (2008) Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. J Volcanol Geotherm Res 178:213–223

    Article  Google Scholar 

  • Pineau F, Javoy M (1983) Carbon isotopes and concentration in mid-oceanic ridge basalts. Earth Planet Sci Lett 62:239–257

    Article  Google Scholar 

  • Plyasunov AV, Shock EL (2003) Prediction of the vapor-liquid distribution constants for volatile nonelectrolytes in water up to its critical temperature. Geochim Cosmochim Acta 67:4981–5009

    Article  Google Scholar 

  • Ray MC, Hilton DR, Muñoz J, Fischer TP, Shaw AM (2009) The effects of volatile recycling, degassing and crustal contamination on the helium and carbon geochemistry of hydrothermal fluids from the Southern Volcanic Zone of Chile. Chem Geol 166:38–49

    Article  Google Scholar 

  • Sadofsky SJ, Bebout GE (2004) Nitrogen geochemistry of subducting sediments: new results from the Izu-Bonin-Mariana margin and insights regarding global nitrogen subduction. Geochem Geophys Geosys 5, doi:10.1029/2003GC000543

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gases from island arcs. Chem Geol 119:265–274

    Article  Google Scholar 

  • Sano Y, Gamo T, Williams SN (1997) Secular variations of helium and carbon isotopes at Galera volcano, Colombia. J Volcanol Geotherm Res 77:255–265

    Article  Google Scholar 

  • Sano Y, Takahata N, Nishio Y, Marty B (1998) Nitrogen recycling in subduction zones. Geophys Res Lett 25:2289–2292

    Article  Google Scholar 

  • Sano Y, Takahata N, Nishio Y, Fischer TP, Williams SN (2001) Volcanic flux of nitrogen from the earth. Chem Geol 171:263–271

    Article  Google Scholar 

  • Saracco L, D’Amore F (1989) CO2B, a computer program for applying a gas-geothermometer to geothermal systems. Comput Geosci 15(7):1053–1065

    Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661

    Article  Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  Google Scholar 

  • Seewald JS (1994) Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370:285–287

    Article  Google Scholar 

  • Seewald JS (2001) Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. Geochim Cosmochim Acta 65:1641–1664

    Article  Google Scholar 

  • Sierra J, D’Amore F, Panarello H, Pedro G (1992) Reservoir characteristics of the vapour dominated geothermal field of Copahue, Neuquén, Argentina, as established by isotopic and geochemical techniques. Geothermal investigations with isotope and geochemical tecniques in Latin America. Nuclear Techniques in Geothermal Resources Investigation. San José, Costa Rica, pp 13–30

    Google Scholar 

  • Stix J, Torres R, Narváez L, Cortés GP, Raigosa J, Gómez D, Castonguay R (1997) A model of vulcanian eruptions at Galeras volcano, Colombia. J Volcanol Geotherm Res 77:285–303

    Article  Google Scholar 

  • Stull DR, Westrum EF, Sinke GG (1969) The Chemical thermodynamics of organic compounds. Wiley, New York

    Google Scholar 

  • Taran YA, Giggenbach WF (2003) Geochemistry of light hydrocarbons in subduction-related volcanic and hydrothermal fluids. In: Simmons SF, Graham IJ (eds), Volcanic, geothermal, and ore-forming fluids: Rulers and witnesses of processes within the Earth, Littleton, Colorado, Society of Economic Geology Special Publications, vol 10, pp 61–74

    Google Scholar 

  • Taran YA, Pokrovsky BG, Esikov AD (1989) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: ‘andesitic waters’. Dokl Akad Nauk SSSR 304:440–443

    Google Scholar 

  • Tassi F, Martinez C, Vaselli O, Capaccioni B, Viramonte J (2005) The light hydrocarbons as new geoindicators of equilibrium temperatures and redox conditions of geothermal fields: evidence from El Tatio (northern Chile). App Geochem 20:2049–2062

    Article  Google Scholar 

  • Tassi F, Vaselli O, Capaccioni B, Montegrossi G, Barahona F, Caprai A (2007) Scrubbing processes and chemical equilibria controlling the composition of light hydrocarbons in natural gas discharges: an example from the geothermal fields of Salvador. Geochem Geophys Geosyst 8:Q05008. doi:10.1029/2006GC001487

    Article  Google Scholar 

  • Tassi F, Capaccioni B, Capecchiacci F, Vaselli O (2009a) Non-methane volatile organic compounds (VOCs) at El Chichon volcano (Chiapas, mexico): geochemical features, origin and behavior. Geofis Intern 48(1):85–95

    Google Scholar 

  • Tassi F, Aguilera F, Vaselli O, Medina E, Tedesco D, Delgado Huertas A, Poreda R, Kojima S (2009b) The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile. Bull Volcanol 71:171–183

    Article  Google Scholar 

  • Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B, Poreda RJ, Delgado Huertas A (2010a) Fluid geochemistry of hydrothermal system in the Arica-Parinacota, Tarapacá and Antofagasta regions (Northern Chile). J Volcanol Geotherm Res 192:1–15

    Article  Google Scholar 

  • Tassi F, Montegrossi G, Capaccioni B, Vaselli O (2010b) Origin and distribution of thiophenes and furans in thermal fluid discharges from active volcanoes and geothermal systems. Int J Mol Sci 11:1434–1457

    Article  Google Scholar 

  • Tassi F, Fiebig J, Vaselli O, Nocentini M (2012) Origins of methane discharging from volcanic, hydrothermal and cold emissions in Italy. Chem Geol 310–311:36–48

    Article  Google Scholar 

  • Vallés J, Baschini M, Pettinati G, García N (2004) Characterization of muds and waters of the Copahue geothermal field, Neuquen province, Patagonia, Argentina. ICAM-Brasil, pp 507–510

    Google Scholar 

  • Varekamp JC (2008) The volcanic acidification of glacial Lake Caviahue, Province of Neuquen. Argentina J Volcanol Geotherm Res 178:184–196

    Article  Google Scholar 

  • Varekamp JC, Ouimette A, Hermán S, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29(11):1059–1062

    Article  Google Scholar 

  • Varekamp JC, Ouimette AP, Kreulen R (2004) The Magmato System at Copahue Volcano, Argentina. In: Wanty RB, Seal RB II (eds) Water-rock interaction, 11. Bakema Publishers, Leiden, pp 215–218

    Google Scholar 

  • Varekamp JC, deMoor JM, Merrill MD, Colvin AS, Goss AR, Vroon PZ, Hilton DR (2006) Geochemistry and isotopic characteristics of the Caviahue-Copahue volcanic complex, Province of Neuquen, Argentina. Geol Soc Am 407:317–342

    Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. App Geochem 24:208–220

    Article  Google Scholar 

  • Velez ML, Euillades P, Caselli AT, Blanco M, Martinez Diaz J (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J Volcanol Geotherm Res 202:117–126

    Article  Google Scholar 

  • Wilhelm E, Battino R, Wiicock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tassi, F., Agusto, M., Vaselli, O., Chiodini, G. (2016). Geochemistry of the Magmatic-Hydrothermal Fluid Reservoir of Copahue Volcano (Argentina): Insights from the Chemical and Isotopic Features of Fumarolic Discharges. In: Tassi, F., Vaselli, O., Caselli, A. (eds) Copahue Volcano. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48005-2_6

Download citation

Publish with us

Policies and ethics