Skip to main content

Active Tectonics and Its Interactions with Copahue Volcano

  • Chapter
  • First Online:

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

The aim of this review is to describe the state-of-art of the neotectonic setting of this area as well as to present new data resulting from a recent structural field survey. The integrated analysis of literature and new structural data shows incongruities mainly in some regional structures and in the ENE-WSW striking fault system that affects and controls the feeding system of Copahue volcano. In addition, taking into account the very recent volcanic activity, the structural constraints and the earthquakes occurred in the area close to the volcano, a static stress numerical model was applied to simulate the variations of the local stress perturbing the normal activity of the volcanic plumbing system favouring magma ascent and consequent eruptions. At present, a comprehensive structural model is lacking and more in-depth studies can furnish a complete tectonic framework of the area, which can provide fundamental information to assess volcanic hazard, forecast future volcanic activity, and to enhance the development of the associated geothermal field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriasola AC, Thomson SN, Brix MR, Hervé F, Stockhert B (2006) Postmagmatic cooling and Late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos Region of Chile, 41°S–42°S. Int J Earth Sci 95:504–528

    Article  Google Scholar 

  • Arancibia G, Cembrano J, Lavenu A (1999) Transpresión dextral y partición de la deformación en la Zona de Falla Liquiñe-Ofqui, Aisén, Chile (44–45°S). Rev Geol Chile 26(1):3–22

    Article  Google Scholar 

  • Barrientos SE, Ward SN (1990) The 1960 Chile earthquake; inversion for slip distribution from surface deformation. Geophys J Intern 103:589–598

    Article  Google Scholar 

  • Barrientos SE (1994) Large thrust earthquakes and volcanic eruptions. Pure appl Geophys 142(1):225–237

    Article  Google Scholar 

  • Bautista BC, Bautista MLP, Stein RS, Barcelona ES, Punongbayan RS, Laguerta AR, Rasdas EP, Ambubuyog G, Amin EQ (1996) Relationship of regional and local structures of Mount Pinatubo activity. In: Newhall CG, Punongbayan RS (eds) Fire and mud: Eruptions and Lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 351–370

    Google Scholar 

  • Bebbington MS, Marzocchi W (2011) Stochastic models for earthquake triggering of volcanic eruptions. J Geophys Res 116:B05204. doi.org/10.1029/2010JB008114

  • Bellotti F, Capra L, Groppelli G, Norini G (2006) Tectonic evolution of the central-eastern sector of trans Mexican volcanic belt and its influence on the eruptive history of the Nevado de Toluca Volcano (Mexico). In: Tibaldi A, Lagmay AMF (eds) Interaction between volcanoes and their basement. J Volcanol Geotherm Res 158:21–36

    Google Scholar 

  • Bonali FL, Corazzato C, Tibaldi A (2011) Identifying rift zones on volcanoes: an example from La Réunion island. Indian Ocean Bull Volcanol 73(3):347–366

    Article  Google Scholar 

  • Bonali FL, Corazzato C, Tibaldi A (2012) Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina). Global Planet Change 90–91:104–120

    Article  Google Scholar 

  • Bonali FL (2013) Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption. Tectonophysics 608:127–137

    Article  Google Scholar 

  • Bonali FL, Tibaldi A, Corazzato C, Tormey DR, Lara LE (2013) Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: the Chile case. Tectonophysics 583:54–67

    Article  Google Scholar 

  • Brodsky EE, Sturtevant B, Kanamori H (1998) Earthquakes, volcanoes, and rectified diffusion. Geophys Res Lett 103:23827–23838

    Article  Google Scholar 

  • Brogi A, Liotta D, Meccheri M, Fabbrini L (2010) Transtensional shear zones controlling volcanic eruptions: the Middle Pleistocene Mt Amiata volcano (inner Northern Apennines, Italy). Terra Nova 22(2):137–146

    Article  Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Scientific, Oxford, p 270

    Google Scholar 

  • Cameli GM, Dini I, Liotta D (1993) Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (southern Tuscany, Italy). Tectonophysics 224(4):413–423

    Article  Google Scholar 

  • Cembrano J, Hervé F, Lavenu A, Shermer E, Lavenu A, Sanhueza A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259(1–3):55–66

    Article  Google Scholar 

  • Cembrano J, Shermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe-Ofqui fault zone, southern Chilean Andes. Tectonophysics 319:129–149

    Article  Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the Southern Volcanic Zone of the Chilean Andes: a review. Tectonophysics 471:96–113

    Article  Google Scholar 

  • Chinn DS, Isacks BL (1983) Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the News Hebrides islands arc. Tectonics 2:529–563

    Article  Google Scholar 

  • Cisternas M, Atwater BF, Torrejon T, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Ignacio S, Kamataki T, Shishikura M, Rajendran CP, Malik JK, Rizal Y, Husni M (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437:404–407

    Article  Google Scholar 

  • Collini E, Osores MS, Folch A, Viramonte JG, Villarosa G, Salmuni G (2013) Volcanic ash forecast during the June 2011 Cordon Caulle eruption. Nat Haz 66(2):389–412. doi:10.0007/s11069-012-0492-y

    Article  Google Scholar 

  • Comte D, Eisenberg A, Lorca E, Pardo M, Ponce L, Saragoni R, Singh SK, Suárez G (1986) The central Chile earthquake of 3 March 1985: a repeat of previous great earthquakes in the region? Science 233:449–453

    Article  Google Scholar 

  • Corazzato C, Tibaldi A (2006) Basement fracture control on type, distribution, and morphology of parasitic volcanic cones: an example from Mt. Etna, Italy. In: Tibaldi A, Lagmay M (eds) Interaction between Volcanoes and their Basement. J Volcanol Geoth Res Special issue, 158:177–194

    Google Scholar 

  • Decker RW, Klein FW, Okamura AT, Okubo PG (1995) Forecasting eruptions of Mauna Loa Volcano, Hawaii. Mauna Loa revealed; structure, composition, history, and hazards. American Geophysical Union, Washington, DC, United States, pp 337–348

    Google Scholar 

  • Delle Donne D, Harris AJL, Ripepe M, Wright R (2010) Earthquake-induced thermal anomalies at active volcanoes. Geology 38(9):771–774

    Article  Google Scholar 

  • Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 93:4258–4270

    Article  Google Scholar 

  • Eggert S, Walter TR (2009) Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471:14–26

    Article  Google Scholar 

  • Folguera A, Ramos VA (2000) Control estructural del vólcan Copaue: Implicancias tectónicas para el arco volcánico Cuaternario (36°–39 °S): Rev Geol Arg 55:229–244

    Google Scholar 

  • Folguera A, Ramos VA (2009) Collision of the Mocha fracture zone and a < 4 Ma old wave of orogenic uplift in the Andes (36°–38 °S). Lithosphere 1(6):364–369

    Article  Google Scholar 

  • Folguera A, Ramos VA, Melnick D (2002) Partición de la deformación en la zona del arco volcánico de los Andes neuquinos (36–39 °S) en los últimos 30 millones de años. Rev Geol Chile 29(2):151–165

    Article  Google Scholar 

  • Folguera A, Ramos VA, Hermans R, Naranjo J (2004) Neotectonics in the foothills of the southernmost central Andes (37°–38 °S): Evidence of strike-slip displacement along the Antiñir-Copahue fault Zone. Tectonics 23(5). doi:10.1029/2003TC001533

    Google Scholar 

  • Folguera A, Ramos VA, Gonzalez Dıaz E, Hermanns R (2006) Late Cenozoic evolution of the Eastern Andean Foothills of Neuquén between 37° and 37°30’S. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean Margin at the latitude of the Neuquén Basin (36–39 °S). Geol Soc Am 407:247–266

    Google Scholar 

  • Folguera A, Rojas Vera E, Tobal J, Orts D, Ramos VA (2015) A review to the geology, structural controls and tectonic setting of the Copahue volcano in the Southern Volcanic Zone (in this volume 2015)

    Google Scholar 

  • Freed AM, Lin J (2002) Accelerated stress buildup on the southern San Andreas Fault and surrounding regions caused by Mojave Desert earthquakes. Geology 30(6):571–574

    Article  Google Scholar 

  • Giordano G, Pinton A, Cianfarra P, Baez W, Chiodi A, Viramonte J, Norini G, Groppelli G (2013) Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina). J Volcanol Geotherm Res 249:77–94

    Article  Google Scholar 

  • Groppelli G, Norini G (2011) Geology and tectonics of the southwestern boundary of the unstable sector of Mt Etna (Italy). J Volcanol Geotherm Res 208:66–75

    Article  Google Scholar 

  • Hill DP, Pollitz F, Newhall C (2002) Earthquake-volcano interactions. Phys Today 55:41–47

    Article  Google Scholar 

  • Ibáñez JM, Del Pezzo E, Bengoa C, Caselli A, Badi G, Almendros J (2008) Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina. J Volcanol Geotherm Res 174:284–294

    Article  Google Scholar 

  • Ichihara M, Brodsky EE (2006) A limit on the effect of rectified diffusion in volcanic systems. Geophys Res Lett 33:L02316. doi.org/10.1029/2005GL024753

  • Invernizzi C, Pierantoni PP, Chiodi A, Maffucci R, Corrado S, Baez W, Tassi F, Giordano G, Viramonte J (2014) Preliminary assessment of the geothermal potential of Rosario de la Frontera area (Salta, NW Argentina): insight from hydro-geological, hydro-geochemical and structural investigations. J South Am Earth Sci 54:20–36

    Article  Google Scholar 

  • Kelleher JA (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77:2087–2103

    Article  Google Scholar 

  • Kenner SJ, Segall P (2000) Postseismic deformation following the 1906 San Francisco earthquake. J Geophys Res 105:13195–13209

    Article  Google Scholar 

  • King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953

    Google Scholar 

  • Lange D, Cembrano J, Rietbrock A, Haberland C, Dahm T, Bataille K (2008) First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455:14–24

    Article  Google Scholar 

  • Lara LE, Lavenu A, Cembrano J, Rodríguez C (2006) Structural controls of volcanism in transversal chains: resheared faults and neotectonics in the Cordón Caulle-Puyehue area (40.5 °S), southern Andes. J Volcanol Geotherm Res 158:70–86

    Article  Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore and intra-arc zones (Andes of Central and Southern Chile). J Structur Geol 21:1669–1691

    Article  Google Scholar 

  • Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res 109:B02303

    Google Scholar 

  • Lin YN, Sladen A, Ortega-Culaciati F, Simons M, Avouac J-P, Fielding EJ, Brooks BA, Bevis M, Genrich J, Rietbrock A, Vigny C, Smalley R, Socquet A (2013) Coseismic and postseismic slip associated with the 2010 Maule earthquake, Chile: characterizing the Arauco Peninsula barrier effect. J Geophys Res 118(6):3142–3159

    Article  Google Scholar 

  • Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890

    Article  Google Scholar 

  • Linde AT, Sacks IS, Johnston MJS, Hill DP, Bilham RG (1994) Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature 371:408–410

    Article  Google Scholar 

  • Lomnitz C (1970) Major earthquakes and tsunamis in Chile during the period 1535 to 1955. Geologische Rundschau Zeitschrift für Allgemeine Geologische 59:938–960

    Article  Google Scholar 

  • Lomnitz C (1985) Tectonic feedback and the earthquake cycle. Pageoph 123:667–682

    Article  Google Scholar 

  • López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic quaternary volcanism (37–46 °S). Rev Geol Chile 22(2):219–234

    Google Scholar 

  • Main IG, Meredith PG (1991) Stress corrosion constitutive laws as a possible mechanism of intermediate-term and short-term seismic quiescence. Geophys J Int 107:363–372

    Article  Google Scholar 

  • Mamani MJ, Borzotta E, Venencia JE, Maidana A, Moyano CE, Castiglione B (2000) Electric structure of the Copahue Volcano (Neuquén Province, Argentina), from magnetotelluric soundings: 1D and 2D modellings. J South Am Earth Sci 13:147–156

    Article  Google Scholar 

  • Manga M, Brodsky EE (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annual Review of Earth and Planetary Science, 34, 263–291

    Google Scholar 

  • Marzocchi W (2002a) Remote seismic influence on large explosive eruptions. J Geophys Res 107(B1):2018

    Google Scholar 

  • Marzocchi W (2002b) Remote seismic influence on the large explosive eruptions. J Geophys Res 107:EPM 6–1

    Google Scholar 

  • Marzocchi W, Scandone R, Mulargia F (1993) The tectonic setting of Mount Vesuvius and the correlation between its eruptions and the earthquakes of the Southern Apennines. J Volcanol Geotherm Res 58(1–4):27–41

    Article  Google Scholar 

  • Marzocchi W, Casarotti E, Piersanti A (2002) Modeling the stress variations induced by great earthquakes on the largest volcanic eruptions of the 20th century. J Geophys Res 107(B11):2320

    Article  Google Scholar 

  • Mazzoni MM, Licitra DT (2000) Significado estratigráfico y volcanológico de depósitos de flujos piroclásticos neógenos con composición intermedia en la zona del lago Caviahue, provincia del Neuquén. Rev Asoc Geol Arg 55(3):188–200

    Google Scholar 

  • McLeod P, Tait S (1999) The growth of dykes from magma chambers. J Volcanol Geotherm Res 92:231–246

    Article  Google Scholar 

  • Melnick D (2000) Geometría y estructuras de la parte norte de la zona de falla de Liquiñe-Ofqui (38°S): interpretación de sensores remotos. In: IX Congreso Geológico Chileno, Puerto Varas, Chile, vol 1, pp 796–799

    Google Scholar 

  • Melnick D, Folguera A (2001) Geologia del complejo volcànico Copahue-Caldera Del Agrio, un sistema transtensional activo desde el Plioceno en la transiciòn de los Andes Patagònicos a los Andes Centrales (38 °S–71 °O). In: IX Congreso Geòlogico Latinoamericano, Montevideo, Uruguay, Universidad de Montevideo, pp 6–11

    Google Scholar 

  • Melnick D, Folguera A, Ramos VA (2006) Structural control on arc volcanism: the Caviahue-Copahue complex, Central to Patagonian Andes transition (38 °S). J South Am Earth Sci 22:66–88

    Article  Google Scholar 

  • Moreno H, Lahsen A (1986) El volcán Callaqui: ejemplo de vulcanismo fisural en los Andes del Sur. Rev Asoc Geol Arg 42:1–8

    Google Scholar 

  • Moreno H, Petit-Breuilh ME (1999) El volcán fisural CordónCaulle, Andes del Sur (40.5°S): geología general y comportamiento eruptivo histórico. In: XIV Congreso Geológico Argentino, Còrdoba, Argentina, vol 2, pp 258–260

    Google Scholar 

  • Mithen DP (1982) Stress amplification in the upper crust and the development of normal faulting. Tectonophysics 83:121–130

    Article  Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation: Principle and proposal. J Volcanol Geotherm Res 2:1–16

    Article  Google Scholar 

  • Norini G, Capra L, Groppelli G, Lagmay AMF (2008) Quaternary sector collapses of Nevado de Toluca volcano (Mexico) governed by regional tectonics and volcanic evolution. Geosphere 4(5):854–871

    Article  Google Scholar 

  • Norini G, Capra L, Groppelli G, Agliardi F, Pola A, Cortes A (2010) Structural architecture of the Colima Volcanic Complex. J Geophys Res 115(B12209):1–20. doi:10.1029/2010JB007649

    Google Scholar 

  • Norini G, Baez W, Becchio R, Viramonte J, Giordano G, Arnosio M, Pinton A, Groppelli G (2013) The Calama-Olacapato-El Toro fault system in the Puna Plateau, Central Andes: geodynamic implications and stratovolcanoes emplacement. Tectonophysics 608:1280–1297

    Article  Google Scholar 

  • Nostro C, Stein RS, Cocco M, Belardinelli ME, Marzocchi W (1998) Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J Geophys Res 103:24487–24504

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Okal EA (2005) A re-evaluation of the great Aleutian and Chilean earthquakes of 1906 August 17. Geophys J Int 161:268–282

    Article  Google Scholar 

  • Piersanti A, Spada G, Sabadini R, Bonafede M (1995) Global postseismic deformation. Geophys J Int 120:544–566

    Article  Google Scholar 

  • Piersanti A, Spada G, Sabadini R (1997) Global postseismic rebound of a viscoelastic Earth: Theory for finite faults and application to the 1964 Alaska earthquake. J Geophys Res 102:477–492

    Article  Google Scholar 

  • Pollitz FF, Bürgmann R, Romanowicz B (1998) Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science 280:1245–1249

    Article  Google Scholar 

  • Potent S, Reuther CD (2001) Neogene Deformationsprozesse im aktiven magmatischen Bogen Sudcentralchiles zwichen 37° und 39 °S. Mitteilungen aus dem Geologisch-Pala eontologischen Institut der Universitaet Hamburg 85:1–2

    Google Scholar 

  • Radic JP, Rojas L, Carpinelli A, Zurita E (2002) Evolución tectónica de la cuenca terciaria de Cura-Mallín, región cordillerana chileno argentina (36°30′-39°00′S). XV Congreso Geológico Argentino, Calafate, Argentina 3:233–237

    Google Scholar 

  • Rojas Vera E, Folguera A, Spagnuolo M, Gímenez M, Ruiz F, Martínez P. Ramos VR (2009) La neotectónica del arco volcánico a la latitud del volcán Copahue (38 °S), Andes de Neuquén. Rev Asoc Geol Arg 65(1):204–214

    Google Scholar 

  • Rojas Vera EA, Folguera A, Valcarce GZ, Bottesi G, Ramos VR (2014) Structure and development of the andean system between 36 ° and 39°S. J Geodyn 73:34–52

    Article  Google Scholar 

  • Rosenau M (2004) Tectonics of the southern Andean intra-arc zone (38°–42°S). Ph.D. thesis, Free University, Berlin, Germany, pp 159

    Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the Southern Andes between 38°S and 42°S latitude. Tectonics 25:TC4013

    Google Scholar 

  • Sumita I, Manga M (2008) Suspension rheology under oscillatory shear and its geophysical implications. Earth Planet Sci Lett 269:468–477

    Article  Google Scholar 

  • Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100(B12):24521–24535

    Article  Google Scholar 

  • Toda S, Stein RS, Richards-Dinger K, Bozkurt S (2005) Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J Geophys Res B05S16

    Google Scholar 

  • Toda S, Stein RS, Lin J, Sevilgen K (2011) Coulomb 3.3 User Guide

    Google Scholar 

  • Tormey DR, Hickey-Vargas R, Frey FA, López-Escobar L (1991) Recent lavas from the Andean volcanic front (33–42 °S); interpretations of along-arc compositional features. In: Harmon RS, Rapela CW (eds), Andean Magmatism and its Tectonic Setting. Geol Soc Am 265:57–77

    Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Bermudez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29:1059–1062

    Article  Google Scholar 

  • Velez ML, Euillades P, Caselli A, Blanco M, Díaz JM (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J Volcanol Geotherm Res 202:117–126

    Article  Google Scholar 

  • Walter TR (2007) How a tectonic earthquake may awake silent volcanoes: Stress triggering during the 1996 earthquake-eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet Sci Lett 264(3–4):347–359

    Article  Google Scholar 

  • Walter TR, Schmincke H-U (2002) Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). Int J Earth Sci 91:615–628

    Article  Google Scholar 

  • Walter TR, Amelung F (2006) Volcano-earthquake interaction at Mauna Loa volcano, Hawaii. J Geophys Res 111:B05204

    Google Scholar 

  • Walter TR, Amelung F (2007) Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35:539–542

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Watt SFL, Pyle DM, Mather TA (2009) The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet Sci Lett 277:399–407

    Article  Google Scholar 

Download references

Acknowledgments

Fieldwork in the Copahue area was carried out in the framework and with funding of the IGCP 508YS Project “Inception of volcano collapses by fault activity: examples from Argentina, Ecuador and Italy” co-led by C. Corazzato, and benefited also from a TWAS grant. The authors thank Ivan Petrinovic for field cooperation. We acknowledge Ross E. Stein, Jian Lin and Min Ding for providing the Coulomb input file for the 1960 Chile earthquake. Hiroo Kanamori kindly provided the focal mechanism data for the 1960. Anthony Sladen is acknowledged for kindly providing the 2010 Chile earthquake finite fault models. We also want to thank the Editors for inviting us in the thematic volume and for their kind support, and Marco Bonini and José Viramonte, whose comments improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Groppelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonali, F.L., Corazzato, C., Bellotti, F., Groppelli, G. (2016). Active Tectonics and Its Interactions with Copahue Volcano. In: Tassi, F., Vaselli, O., Caselli, A. (eds) Copahue Volcano. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48005-2_2

Download citation

Publish with us

Policies and ethics