Skip to main content

Photochemistry, a Powerful Science

  • Chapter
Photochemistry
  • 2583 Accesses

Abstract

Photochemical reactions often take an unexpected course, or at least one that is not predicted on the basis of thermal chemistry. This is not surprising when the high energy of excited states, comparable with that of covalent bonds, is considered and thus the formation of high-energy intermediates is taken into account. The course of photochemical reactions can be traced by typical methods, flash photolysis and matrix isolation, that are highly informative. The study by these methods is of wide interest in chemistry both for supporting the reaction mechanism by supplying evidence about high-energy intermediates and for application to new syntheses, e.g., of strained molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White JD (2000) George Büchi. Org Synth 77:xxiii–xxvi

    Google Scholar 

  2. Griesbeck AG (2009) Photochemistry of organic compounds. Angew Chem Int Ed 48:4671–4672

    Article  CAS  Google Scholar 

  3. Klán P, Wirz J (2009) Photochemistry of organic compounds. From concepts to practice. Wiley, New York, p 1

    Book  Google Scholar 

  4. Belluš D, Kearns SR, Schaffner K (1969) Zur Photochemie von α,β-ungesättigen cyclische Ketoene: Spezifische Reaktione der n,π*- und π, π*-Triplettszustände von O-Acetyl-testosteron und 10-Methyl-octalon-(2). Helv Chim Acta 52:971–1009

    Article  Google Scholar 

  5. Ganter C (2010) Closing remarks at the symposium in honor of D. Belluš. Chimia 64(12):69–71

    Article  CAS  Google Scholar 

  6. Engel CR, Lachance P, Capitaine J, Zee J, Mukherjee D, Mérand Y (1983) Favorskii rearrangements of α-halogenated acetylcycloalkanes. Stereochemistry of cyclopropanonic rearrangements and the influence of steric factors on the competing formation of α-hydroxy ketones. J Org Chem 48:1954–1966

    Article  CAS  Google Scholar 

  7. Ricci A, Fasani E, Mella M, Albini A (2003) General patterns in the photochemistry of pregna-1,4-dien-3,20-diones. J Org Chem 68:4361–4367

    Article  CAS  Google Scholar 

  8. Lin AY, Kranz A (1972) Matrix isolation of cyclobutadiene. J Chem Soc Chem Commun 1111–1112

    Google Scholar 

  9. Ginsburg D (1972) Small-ring propellanes. Accounts Chem Res 5:249–255

    Article  CAS  Google Scholar 

  10. Osawa E, Aigami K, Inamoto I (1977) Steric effects in photochemical intramolecular [π2 + π2] ring closure reaction of polycyclic diolefins leading to strained cage molecules. Empirical force field calculations. J Org Chem 42:2621–2625

    Article  CAS  Google Scholar 

  11. Mascitti V, Corey EJ (2006) Enantioselective synthesis of pentacycloanammoxic acid. J Am Chem Soc 128:3118–3119

    Article  CAS  Google Scholar 

  12. Mondal R, Okhrimenko AN, Shah BK, Neckers DC (2008) Photodecarbonylation of α-diketones: a mechanistic study of reactions leading to acenes. J Phys Chem 112:11–15

    Article  CAS  Google Scholar 

  13. Tönshoff C, Bettinger HF (2010) Photogeneration of octacene and nonacene. Angew Chem Int Ed 49:4125–4128

    Article  Google Scholar 

  14. Porter G (1972) Flash photolysis and some of its applications—Nobel lecture December 11, 1967. In: Nobel lectures, chemistry. Elsevier, Amsterdam, pp 1963–1970

    Google Scholar 

  15. Scaiano JC (2004) Laser flash photolysis a tool for physical organic chemistry. In: Moss RA, Platz MS, Maitland J Jr (eds) Reactive intermediates in chemistry. Wiley, Hoboken, Ch 18

    Google Scholar 

  16. Porter G, Wright FJ (1953) Studies of free radical reactivity by the methods of flash photolysis. The photochemical reaction between chlorine and oxygen. Discuss Faraday Soc 14:23–34

    Article  Google Scholar 

  17. Melville HV (1947) The labile molecule. Introductory address. Trans Faraday Soc 2:2–6

    Article  Google Scholar 

  18. (1954) The study of fast reactions. Discuss Faraday Soc 17:1–236

    Google Scholar 

  19. Porter G, Wright FJ (1955) Primary photochemical processes in aromatic molecules. Part 3. Absorption spectra of benzyl, aniline, phenoxy and related free radicals. Trans Faraday Soc 51:1469–1474

    Article  CAS  Google Scholar 

  20. Bayrakçeken F (2007) High sensitive detection of benzyl free radicals in the vapor phase. Spectrochim Acta A 68:143–146

    Article  Google Scholar 

  21. Porter G, Wright MR (1959) Modes of energy transfer from excited and unstable ionized states. Intramolecular and intermolecular energy conversion involving change of multiplicity. Discuss Faraday Soc 27:18–27

    Article  Google Scholar 

  22. Parker CA, Hatchard C (1962) Delayed fluorescence from solutions of anthracene and phenanthrene. Proc Roy Soc Lond Ser A 269:574–584

    Article  Google Scholar 

  23. Thrush BA (1986) Flash photolysis and the study of free radicals in the infrared. J Chem Soc Faraday Trans 2(82):2125–2128

    Article  Google Scholar 

  24. Pozdnyakov IP, Aksenova YV, Ermolina EG, Melnikov AA, Kuznetsova RT, Grivin VP, Plyusnin VF, Berezin MB, Semeikin AS, Chekalin SV (2013) Photophysics of diiodine-substituted fluorinated boron–dipyrromethene: a time resolved study. Chem Phys Lett 585:49–52

    Article  CAS  Google Scholar 

  25. Šolomek T, Heger D, Ngoy BP, Givens RS, Klán P (2013) The pivotal role of oxyallyl diradicals in photo-Favorskii rearrangements: transient spectroscopic and computational studies. J Am Chem Soc 135:15209–15215

    Article  Google Scholar 

  26. Miranda MA, Font-Sanchis E, Pérez-Prieto G, Scaiano JC (2002) Flash photolysis of (E)-1,2-bis(1-chloro-1-phenylmethyl)cyclopropane. Generation of 1,5-diphenylpentadienyl radical and 1,5-diphenylpentadienylium cation. J Org Chem 67:1162–1166

    Article  CAS  Google Scholar 

  27. Brunet E, Alonso M, Quintana MC, Atienzar P, Juanes O, Rodriguez-Ubis JC, Garcìa H (2008) Laser flash-photolysis study of organic-inorganic materials derived from zirconium phosphates/phosphonates of Ru(bpy)3 and C60 as electron donor-acceptor pairs. J Phys Chem C 112:5699–5702

    Article  CAS  Google Scholar 

  28. Boese WT, Ford PC (1994) Time-resolved infrared spectral studies of intermediates formed in the laser flash photolysis of Mn(CO)5CH3. Organometallics 13:3525–3531

    Article  CAS  Google Scholar 

  29. Reszka KJ, Takayama M, Sik RH, Chignell CF, Saito I (2005) Photochemistry of naphthalene diimides: EPR study of free radical formation via photoredox process. Photochem Photobiol 81:573–580

    Article  CAS  Google Scholar 

  30. Zarkadis AK, Georgakilas V, Perdikomatis GP, Trifonov A, Gurzadyan GG, Skoulika S, Siskos MG (2005) Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes. Photochem Photobiol Sci 4:469–480

    Article  CAS  Google Scholar 

  31. Zimmerman HE, Werthemann DP, Kamm KS (1974) Single photon counting and magic multipliers in direct measurement of singlet excited state di-.pi.-methane rearrangement rates in the picosecond range. Mechanistic organic photochemistry. LXXXIII. J Am Chem Soc 96:439–449

    Article  CAS  Google Scholar 

  32. O’Connor D, Phillips D (1984) Time-correlated single photon counting. Academic, Orlando

    Google Scholar 

  33. Bally T (2004) Matrix isolation. In: Moss RA, Platz MS, Jones M Jr (eds) Reactive intermediate chemistry. Wiley, New York, Chapter 17

    Google Scholar 

  34. Norman I, Porter G (1954) Trapped atoms and radicals in a glass “cage”. Nature 174:508–509

    Article  CAS  Google Scholar 

  35. Whittle E, Dows DA, Pimentel GC (1954) Matrix isolation method for the experimental study of unstable species. J Chem Phys 22:1943

    CAS  Google Scholar 

  36. McMahon RJ, Abelt CJ, Chapman OL, Johnson JW, Kreil CL, LeRoux JP, Mooring AM, West PR (1987) 1,2,4,6-cycloeptatetraene: the key intermediate in aryl carbene interconversions and related C7H6 rearrangements. J Am Chem Soc 109:2456–2469

    Article  CAS  Google Scholar 

  37. Pacansky J, Dupuis M (1982) Assignment of the infrared spectrum for the ethyl radical. J Am Chem Soc 104:415–421

    Google Scholar 

  38. Carra C, Bally T, Albini A (2005) Role of conformation and electronic structure in the chemistry of ground and excited state o-pyrazolylphenylnitrenes. J Am Chem Soc 127:5552–5562

    Article  CAS  Google Scholar 

  39. Sander W, Roy D, Bravo-Rodriguez K, Grote D, Sanchez-Garcia E (2014) The benzylperoxyl radical as a source of hydroxyl and phenyl radicals. Chem Eur J 20:12917–12923

    Article  CAS  Google Scholar 

  40. Dunkin IR (2004) Matrix photochemistry. In: Horspool W, Lenci F (eds) Organic photochemistry and photobiology, 2nd edn. CRC, Orlando, Chapter 14

    Google Scholar 

  41. Dunkin IR (1998) Matrix isolation techniques: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  42. Moore CB, Pimentel GC (1964) Matrix reaction of methylene with nitrogen to form diazomethane. J Chem Phys 41:3504–3510

    Article  CAS  Google Scholar 

  43. Pezacki JP, Shukla D, Lusztyk J, Warkentin J (1999) Lifetimes of dialkylcarbocations derived from alkanediazonium salts in solution: cyclohexadienyl cations as kinetic probes for cations reactivity. J Am Chem Soc 121:6589–6598

    Article  CAS  Google Scholar 

  44. Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) Reference scales for the characterization of cationic electrophiles and neutral nucleophiles. J Am Chem Soc 123:9500–9512

    CAS  Google Scholar 

  45. Winkler M, Sander W (2000) Isolation of phenyl cation in a solid argon matrix. Angew Chem 39:2014–2016

    Article  CAS  Google Scholar 

  46. Winkler M, Sander W (2006) Generation and reactivity of the phenyl cation in cryogenic argon matrices: monitoring the reactions with nitrogen and carbon monoxide directly by IR spectroscopy. J Org Chem 71:6357–6367

    Article  CAS  Google Scholar 

  47. Manet I, Monti S, Grabner G, Protti S, Dondi D, Dichiarante V, Fagnoni M, Albini A (2008) Revealing phenylium, phenonium, vinylenephenonium and benzenium ions in solution. Chem Eur J 14:1029–1039

    Article  CAS  Google Scholar 

  48. Gupta S, Choudhury R, Krois D, Wagner G, Brinker UH, Ramamurthy V (2011) Photochemical generation and reactivity of carbenes within an organic cavitand and capsule: photochemistry of adamantanediazirines. Org Lett 22:6074–6077

    Article  Google Scholar 

  49. Kaanumalle LS, Gibb CLD, Gibb BC, Ramamurthy V (2004) Controlling photochemistry with distinct hydrophobic nanoenvironments. J Am Chem Soc 126:14366–14367

    Article  CAS  Google Scholar 

  50. Zhang Y, Burdzinski G, Kubicki J, Platz MS (2008) Direct observation of carbene and diazo formation from aryldiazirines by ultrafast IR spectroscopy. J Am Chem Soc 130:16134–16135

    Article  CAS  Google Scholar 

  51. Grutter M, Wyss M, Riaplov E, Maiera JP, Peyerimhoff SD, Hanrath M (1999) Electronic absorption spectra of linear C6, C8 and cyclic C10, C12 in neon matrices. J Chem Phys 111:7397–7401

    Article  CAS  Google Scholar 

  52. Bowling NP, Halter RJ, Hodges JA, Seburg RA, Thomas PS, Simmons CS, Stanton CS, McMahon RJ (2006) Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene. J Am Chem Soc 128:3291–3302

    Article  CAS  Google Scholar 

  53. Thomas PS, Bowling NP, Burrmann NJ, McMahon RJ (2010) Dialkynyl carbene derivatives: generation and characterization of triplet tert-butylpentadiynylidene and dimethylpentadiynylidene. J Org Chem 75:6372–6381

    Article  CAS  Google Scholar 

  54. Leyva E, Platz MS, Persy G, Wirz J (1996) Photochemistry of phenyl azide: the role of singlet and triplet phenylnitrene as transient intermediates. J Am Chem Soc 108:3783–3790

    Article  Google Scholar 

  55. Carra C, Nussbaum R, Bally T (2006) Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices. ChemPhysChem 7:1268–1275

    Article  CAS  Google Scholar 

  56. Ghosh R, Seal P, Chakrabarti S (2010) Role of p-conjugation in influencing the magnetic interactions in dinitrenes: a broken symmetry approach. J Phys Chem A 114:93–96

    Article  CAS  Google Scholar 

  57. Chapman OL, Mattes K, McIntosh CL, Pacansky J, Calder GV, Orr G (1973) Benzyne. J Am Chem Soc 95:6134–6135

    Article  CAS  Google Scholar 

  58. Jones M Jr, DeCamp M (1971) Photochemical generation of benzyne. J Org Chem 36:1536–1539

    Article  CAS  Google Scholar 

  59. Protti S, Ravelli D, Mannucci B, Albini A, Fagnoni M (2012) α,n-Didehydrotoluenes by photoactivation of (chlorobenzyl)trimethylsilanes: an alternative to enyne-allenes cyclization. Angew Chem Int Ed 51:8577–8580

    Article  CAS  Google Scholar 

  60. Ravelli D, Protti S, Fagnoni M (2015) Photogenerated α, n-didehydrotoluenes from chlorophenylacetic acids at physiological pH. J Org Chem 80:852–858

    Article  CAS  Google Scholar 

  61. Noyori R (2010) Insight: green chemistry: the key to our future. Tetrahedron 66:1028–1028

    Article  CAS  Google Scholar 

  62. Mascitti V, Corey EJ (2004) Total synthesis of (±)-pentacycloanammoxic acid. J Am Chem Soc 126(48):15664–15665

    Article  CAS  Google Scholar 

  63. Valiulin RA, Arisco TM, Kutateladze AG (2010) Strained to the limit: when a cyclobutyl moiety becomes a thermodynamic sink in a protolytic ring-opening of photogenerated oxetanes. Org Lett 12:3398–3401

    Article  CAS  Google Scholar 

  64. Suzuki M, Aotake T, Yamaguchi Y, Noguchi N, Nakano H, Nakayama K-i, Yamada H (2014) Synthesis and photoreactivity of 1,2-diketone-type precursors of acenes and their use in organic-device fabrication. J Photochem Photobiol C 18:50–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albini, A. (2016). Photochemistry, a Powerful Science. In: Photochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47977-3_6

Download citation

Publish with us

Policies and ethics