Skip to main content

Genome Evolution after Whole Genome Triplication: the Subgenome Dominance in Brassica rapa

  • Chapter
  • First Online:
  • 1917 Accesses

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Subgenome dominance is widely existed in plant species that experienced allopolyploidization. Subgenome dominance represents a series of biased pehnomenons as that one subgenome retains more genes, more dominantly expressed genes, less functional mutations etc., over the other subgenomes. Brassica rapa, which experienced a whole genome triplication (WGT) event ~11 million years ago, exhibits significant subgenome dominance, with the LF (the least fractionated) subgenome retains ~1.5 times more genes in average than the other two subgenomes MF1 and MF2 (more fractionated 1 and 2). Furthermore, paralogous genes in LF are always expressed to higher levels and accumulated less functional mutations than that located at MF1 and MF2. Further research found that small RNA mediated methylation of transposons that distributed at genes’ flanking regions plays an important role in the formation of subgenome dominance. Finally, based on these findings, a two-step process was proposed to illustrate the WGT event in B. rapa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Buggs RJ, Chamala S, Wu W, Gao L, May GD et al (2010) Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Mol Ecol 19(Suppl1):132–146

    Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012a) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B et al (2012b) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 7:e36442

    Google Scholar 

  • Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA et al (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    Google Scholar 

  • Garsmeur O, Schnable JC, Almeida A, Jourda C, D’Hont A et al (2014) Two evolutionarily distinct classes of paleopolyploidy. Mol Biol Evol 31:448–454

    Article  CAS  PubMed  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollister JD, Smith LM, Guo YL, Ott F, Weigel D et al (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327

    Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Google Scholar 

  • Sankoff D, Zheng C, Zhu Q (2010) The collapse of gene complement following whole genome duplication. BMC Genom 11:313

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074

    Google Scholar 

  • Schnable JC, Wang X, Pires JC, Freeling M (2012) Escape from preferential retention following repeated whole genome duplications in plants. Front Plant Sci 3:94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Rong J et al (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643

    Article  CAS  PubMed  Google Scholar 

  • Slotte T, Hazzouri KM, Agren JA, Koenig D, Maumus F et al (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS et al (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:1563–1574

    Google Scholar 

  • Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Tian L, Lee HS, Wei NE, Jiang H et al (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li L, Li H, Liu L et al (2012) Transcriptome analysis of rosette and folding leaves in Chinese cabbage using high-throughput RNA sequencing. Genomics 99:299–307

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS, LyonsE, Lisch D et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8:e1000409

    Google Scholar 

  • Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M et al (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc Natl Acad Sci USA 111:5283–5288. doi: 10.1073/pnas.1402475111

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, F., Wu, J., Liu, B., Wang, X. (2015). Genome Evolution after Whole Genome Triplication: the Subgenome Dominance in Brassica rapa . In: Wang, X., Kole, C. (eds) The Brassica rapa Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47901-8_9

Download citation

Publish with us

Policies and ethics