Skip to main content

Modeling Physical Processes at Galactic Scales and Above

  • Chapter
  • First Online:
Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality

Part of the book series: Saas-Fee Advanced Course ((SAASFEE,volume 43))

Abstract

We start with modeling the IGM (in particular, Lyman-\(\alpha \) forest). For that purpose, we will review some of the basic physics of low-density photo-ionized gas and its observational diagnostics. We will explore how thermal pressure makes gas distribution deviate from the dark matter, how the gas temperature evolves in time under the effect of cosmic ionizing background, and how observed spectra emerge from the interplay of density, temperature, and velocity. We will briefly review most important observations of the IGM and will end up with a mystery. After IGM, we continue our journey (together with cosmic gas) through the dense filaments of large-scale structure to galactic halos. We will explore various ways the gas takes to accrete onto halos, and how hot gas in the halo uses radiative cooling to continue its journey to the galactic disk, becoming the ISM of galaxies. On our way we meet wonderful “cool streams”, explore various ways to account for cooling and heating in the gas, and will end up with another mystery story of high velocity clouds. After a brief refresher on galaxy formation, we explore the structure and stability of galactic disks, going well beyond standard Toomre criterion. We then focus our attention to gas, and after a brief overview of atomic and ionized gas dive even deeper into the molecular ISM. We will explore the atomic-to-molecular transition in exquisite detail, before committing a grave mistake of opening a cosmic Pandora box of the X factor, inside which, as in a Russian Matrioshka doll, we find another Pandora box, and then another, until in total desperation we give up and ready ourselves to jumping into the Holy Grail of all of astronomy-star formation. That subject is so huge, that we will only touch it gently, at the largest scales, and will not go much beyond the canonical Kennicutt-Schmidt relation. We will, though, think about it in 2D, realizing that the spatial scale is as an important physical parameter as the density of the molecular gas itself. We will theorize about how the 2D scale/density plane can be charted by star formation rate, but will not arrive at an answer. At the end, we will briefly get familiar with a novel idea of using the Excursion Set formalism as a theory of star formation and, very briefly, familiarize ourselves with numerous ways in which stars affect their environments, collectively known under a buzzname of “stellar feedback”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For these and other curious abbreviations check out Volker Springel’s lectures in this volume.

  2. 2.

    Throughout these lectures I define “solar metallicity” as the metallicity of our galactic neighborhood, \(Z_\odot =0.199\) in absolute units, rather than metallicity of an average-looking single star somewhere in the outskirts of the Galaxy.

  3. 3.

    Notice the convention, Cloudy is a name, not an abbreviation.

  4. 4.

    They are not fully independent, of course—a photon ionizing \(\mathrm{CVI}\) can also ionize neutral hydrogen, but it is convenient to use photoionization rates rather that some other, arbitrary filter shapes, since the same rates can be useful in the simulation code for other purposes—for example, for computing the ionization balance of hydrogen, helium, or other chemical elements.

  5. 5.

    God save you from calling it a “law” in the presence of a devout physicist!

  6. 6.

    At least, the vast majority of them—by itself, the THINGS result does not exclude a possibility of a small fraction of stars forming in the atomic gas.

  7. 7.

    One should never forget that the “constant efficiency per free-fall time” model is no more than an ansatz; molecular clouds are turbulent and the free-fall time has no physical relevance on scales above the sonic length.

  8. 8.

    Never forget that stellar masses are not observed, they are always derived from observations of luminosity functions, with all the inherent in spectral synthesis uncertainties and biases.

References

  • Agertz, O., Kravtsov, A. V., Leitner, S. N., & Gnedin, N. Y. 2013, ApJ, 770, 25

    Google Scholar 

  • Altay, G., Theuns, T., Schaye, J., Crighton, N. H. M., & Dalla Vecchia, C. 2011, ApJL, 737, L37.

    Google Scholar 

  • Anderson, M. E. & Bregman, J. N. 2010, ApJ, 714, 320

    Google Scholar 

  • Barnes, J. & Efstathiou, G. 1987, ApJ, 319, 575

    Google Scholar 

  • Begelman, M. C. & Shlosman, I. 2009, ApJL, 702, L5

    Google Scholar 

  • Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57

    Google Scholar 

  • Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846

    Google Scholar 

  • Bigiel, F., Leroy, A. K., Walter, F., Brinks, E., de Blok, W. J. G., Kramer, C., Rix, H. W., Schruba, A., Schuster, K., Usero, A., & Wiesemeyer, H. W. 2011, ApJL, 730, L13+.

    Google Scholar 

  • Binney, J. & Tremaine, S. 1987, Galactic dynamics.

    Google Scholar 

  • Blitz, L. & Robishaw, T. 2000, ApJ, 541, 675

    Google Scholar 

  • Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ArXiv e-prints.

    Google Scholar 

  • Bothwell, M. S., Smail, I., Chapman, S. C., Genzel, R., Ivison, R. J., Tacconi, L. J., Alaghband-Zadeh, S., Bertoldi, F., Blain, A. W., Casey, C. M., Cox, P., Greve, T. R., Lutz, D., Neri, R., Omont, A., & Swinbank, A. M. 2013, MNRAS, 429, 3047

    Google Scholar 

  • Chen, H.-W. 2012, MNRAS, 427, 1238

    Google Scholar 

  • Chen, H.-W., Perley, D. A., Pollack, L. K., Prochaska, J. X., Bloom, J. S., Dessauges-Zavadsky, M., Pettini, M., Lopez, S., Dall’aglio, A., & Becker, G. D. 2009, ApJ, 691, 152

    Google Scholar 

  • Croft, R. A. C., Weinberg, D. H., Katz, N., & Hernquist, L. 1998, ApJ, 495, 44

    Google Scholar 

  • Dall’Aglio, A., Wisotzki, L., & Worseck, G. 2008, A&Ap, 491, 465

    Google Scholar 

  • Draine, B. T. 1978, ApJS, 36, 595

    Google Scholar 

  • Draine, B. T. & Bertoldi, F. 1996, ApJ, 468, 269

    Google Scholar 

  • Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010, ApJL, 710, L142

    Google Scholar 

  • Feldmann, R., Gnedin, N. Y., & Kravtsov, A. V. 2012a, ApJ, 747, 124

    Google Scholar 

  • Feldmann, R., Gnedin, N. Y., & Kravtsov, A. V. 2012b, ApJ, 758, 127

    Google Scholar 

  • Gayley, K. G., Owocki, S. P., & Cranmer, S. R. 1995, ApJ, 442, 296

    Google Scholar 

  • Glover, S. C. O. & Abel, T. 2008, MNRAS, 388, 1627

    Google Scholar 

  • Glover, S. C. O. & Mac Low, M.-M. 2011, MNRAS, 412, 337.

    Google Scholar 

  • Gnedin, N. Y. 2012, ApJ, 754, 113

    Google Scholar 

  • Gnedin, N. Y., Baker, E. J., Bethell, T. J., Drosback, M. M., Harford, A. G., Hicks, A. K., Jensen, A. G., Keeney, B. A., Kelso, C. M., Neyrinck, M. C., Pollack, S. E., & van Vliet, T. P. 2003, ApJ, 583, 525

    Google Scholar 

  • Gnedin, N. Y. & Hollon, N. 2012, ApJS, 202, 13

    Google Scholar 

  • Gnedin, N. Y. & Hui, L. 1998, MNRAS, 296, 44

    Google Scholar 

  • Gnedin, N. Y. & Kravtsov, A. V. 2010, ApJ, 714, 287

    Google Scholar 

  • Gnedin, N. Y. & Kravtsov, A. V. 2011, ApJ, 728, 88

    Google Scholar 

  • Gnedin, N.Y., & Draine, B.T. (2014), ApJ, 795, 37

    Google Scholar 

  • Governato, F., Brook, C., Mayer, L., Brooks, A., Rhee, G., Wadsley, J., Jonsson, P., Willman, B., Stinson, G., Quinn, T., & Madau, P. 2010, Nature, 463, 203

    Google Scholar 

  • Grcevich, J. & Putman, M. E. 2009, ApJ, 696, 385

    Google Scholar 

  • Guedes, J., Callegari, S., Madau, P., & Mayer, L. 2011, ApJ, 742, 76

    Google Scholar 

  • Gupta, A., Mathur, S., Krongold, Y., Nicastro, F., & Galeazzi, M. 2012, ApJL, 756, L8

    Google Scholar 

  • Haffner, L. M., Dettmar, R.-J., Beckman, J. E., Wood, K., Slavin, J. D., Giammanco, C., Madsen, G. J., Zurita, A., & Reynolds, R. J. 2009, Reviews of Modern Physics, 81, 969

    Google Scholar 

  • Haiman, Z., Abel, T., & Rees, M. J. 2000, ApJ, 534, 11

    Google Scholar 

  • Heavens, A. & Peacock, J. 1988, MNRAS, 232, 339

    Google Scholar 

  • Heiderman, A., Evans, II, N. J., Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019

    Google Scholar 

  • Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395

    Google Scholar 

  • Hitschfeld, M., Kramer, C., Schuster, K. F., Garcia-Burillo, S., & Stutzki, J. 2009, A&Ap, 495, 795

    Google Scholar 

  • Hopkins, P. F. 2012a, MNRAS, 423, 2016

    Google Scholar 

  • Hopkins, P. F. 2012b, MNRAS, 423, 2037

    Google Scholar 

  • Hopkins, P. F. 2013, MNRAS, 430, 1653

    Google Scholar 

  • Hui, L. & Gnedin, N. Y. 1997, MNRAS, 292, 27

    Google Scholar 

  • Kennicutt, Jr., R. C. 1989, ApJ, 344, 685

    Google Scholar 

  • Kennicutt, Jr., R. C. 1998, ApJ, 498, 541

    Google Scholar 

  • Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2

    Google Scholar 

  • Klypin, A., Hoffman, Y., Kravtsov, A. V., & Gottlöber, S. 2003, ApJ, 596, 19

    Google Scholar 

  • Kravtsov, A. V. 2003, ApJL, 590, L1

    Google Scholar 

  • Kravtsov, A. V. 2013, ApJL, 764, L31

    Google Scholar 

  • Krumholz, M. R., Leroy, A. K., & McKee, C. F. 2011, ApJ, 731, 25

    Google Scholar 

  • Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 693, 216

    Google Scholar 

  • Krumholz, M. R. & Tan, J. C. 2007, ApJ, 654, 304

    Google Scholar 

  • Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687

    Google Scholar 

  • Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2782

    Google Scholar 

  • Lidz, A., Faucher-Giguère, C.-A., Dall’Aglio, A., McQuinn, M., Fechner, C., Zaldarriaga, M., Hernquist, L., & Dutta, S. 2010, ApJ, 718, 199

    Google Scholar 

  • Magdis, G. E., Daddi, E., Béthermin, M., Sargent, M., Elbaz, D., Pannella, M., Dickinson, M., Dannerbauer, H., da Cunha, E., Walter, F., Rigopoulou, D., Charmandaris, V., Hwang, H. S., & Kartaltepe, J. 2012, ApJ, 760, 6

    Google Scholar 

  • Maller, A. H. & Bullock, J. S. 2004, MNRAS, 355, 694

    Google Scholar 

  • Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&Ap, 128, 212

    Google Scholar 

  • McDonald, P., Miralda-Escudé, J., Rauch, M., Sargent, W. L. W., Barlow, T. A., & Cen, R. 2001, ApJ, 562, 52

    Google Scholar 

  • McDonald, P., Seljak, U., Burles, S., Schlegel, D. J., Weinberg, D. H., Cen, R., Shih, D., Schaye, J., Schneider, D. P., Bahcall, N. A., Briggs, J. W., Brinkmann, J., Brunner, R. J., Fukugita, M., Gunn, J. E., Ivezić, Ž., Kent, S., Lupton, R. H., & Vanden Berk, D. E. 2006, ApJS, 163, 80.

    Google Scholar 

  • Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 295, 319

    Google Scholar 

  • Munshi, F., Governato, F., Brooks, A. M., Christensen, C., Shen, S., Loebman, S., Moster, B., Quinn, T., & Wadsley, J. 2013, ApJ, 766, 56

    Google Scholar 

  • Naoz, S. & Barkana, R. 2007, MNRAS, 377, 667

    Google Scholar 

  • Narayanan, D., Krumholz, M., Ostriker, E. C., & Hernquist, L. 2011, MNRAS, 418, 664

    Google Scholar 

  • Nelson, D., Vogelsberger, M., Genel, S., Sijacki, D., Kereš, D., Springel, V., & Hernquist, L. 2013, MNRAS, 429, 3353

    Google Scholar 

  • Padoan, P. & Nordlund, Å. 2002, ApJ, 576, 870

    Google Scholar 

  • Polyachenko, V. L. & Polyachenko, E. V. 1997, Soviet Journal of Experimental and Theoretical Physics, 85, 417

    Google Scholar 

  • Puchwein, E., Pfrommer, C., Springel, V., Broderick, A. E., & Chang, P. 2012, MNRAS, 423, 149

    Google Scholar 

  • Quilis, V. & Moore, B. 2001, ApJL, 555, L95

    Google Scholar 

  • Rauch, M., Sargent, W. L. W., Barlow, T. A., & Carswell, R. F. 2001, ApJ, 562, 76

    Google Scholar 

  • Ricotti, M., Gnedin, N. Y., & Shull, J. M. 2000, ApJ, 534, 41

    Google Scholar 

  • Rudie, G. C., Steidel, C. C., & Pettini, M. 2012, ApJL, 757, L30

    Google Scholar 

  • Safronov, V. S. 1960, Annales d’Astrophysique, 23, 979

    Google Scholar 

  • Saul, D. R., Peek, J. E. G., Grcevich, J., Putman, M. E., Douglas, K. A., Korpela, E. J., Stanimirović, S., Heiles, C., Gibson, S. J., Lee, M., Begum, A., Brown, A. R. H., Burkhart, B., Hamden, E. T., Pingel, N. M., & Tonnesen, S. 2012, ApJ, 758, 44

    Google Scholar 

  • Schaye, J., Theuns, T., Rauch, M., Efstathiou, G., & Sargent, W. L. W. 2000, MNRAS, 318, 817

    Google Scholar 

  • Schmidt, M. 1959, ApJ, 129, 243

    Google Scholar 

  • Schruba, A., Leroy, A. K., Walter, F., Sandstrom, K., & Rosolowsky, E. 2010, ApJ, 722, 1699

    Google Scholar 

  • Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003, A&Ap, 410, 611

    Google Scholar 

  • Shandarin, S. F. & Zeldovich, Y. B. 1989, Reviews of Modern Physics, 61, 185

    Google Scholar 

  • Shetty, R., Glover, S. C., Dullemond, C. P., & Klessen, R. S. 2011a, MNRAS, 412, 1686

    Google Scholar 

  • Shetty, R., Glover, S. C., Dullemond, C. P., Ostriker, E. C., Harris, A. I., & Klessen, R. S. 2011b, MNRAS, 415, 3253

    Google Scholar 

  • Sofue, Y., Tutui, Y., Honma, M., Tomita, A., Takamiya, T., Koda, J., & Takeda, Y. 1999, ApJ, 523, 136

    Google Scholar 

  • Solomon, P. M., Downes, D., Radford, S. J. E., & Barrett, J. W. 1997, ApJ, 478, 144

    Google Scholar 

  • Stanimirović, S., Dickey, J. M., Krčo, M., & Brooks, A. M. 2002, ApJ, 576, 773

    Google Scholar 

  • Stinson, G. S., Bailin, J., Couchman, H., Wadsley, J., Shen, S., Nickerson, S., Brook, C., & Quinn, T. 2010, MNRAS, 408, 812

    Google Scholar 

  • Tacconi, L. J., Neri, R., Genzel, R., Combes, F., Bolatto, A., Cooper, M. C., Wuyts, S., Bournaud, F., Burkert, A., Comerford, J., Cox, P., Davis, M., Förster Schreiber, N. M., García-Burillo, S., Gracia-Carpio, J., Lutz, D., Naab, T., Newman, S., Omont, A., Saintonge, A., Shapiro Griffin, K., Shapley, A., Sternberg, A., & Weiner, B. 2013, ApJ, 768, 74.

    Google Scholar 

  • Toomre, A. 1964, ApJ, 139, 1217

    Google Scholar 

  • Trowland, H. E., Lewis, G. F., & Bland-Hawthorn, J. 2013, ApJ, 762, 72

    Google Scholar 

  • Valenzuela, O., Rhee, G., Klypin, A., Governato, F., Stinson, G., Quinn, T., & Wadsley, J. 2007, ApJ, 657, 773

    Google Scholar 

  • van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla Vecchia, C. 2011, MNRAS, 414, 2458.

    Google Scholar 

  • Viel, M., Becker, G. D., Bolton, J. S., & Haehnelt, M. G. 2013, ArXiv e-prints.

    Google Scholar 

  • Weiner, B. J. & Williams, T. B. 1996, AJ, 111, 1156

    Google Scholar 

  • Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296

    Google Scholar 

  • Wiersma, R. P. C., Schaye, J., & Smith, B. D. 2009, MNRAS, 393, 99

    Google Scholar 

  • Wolcott-Green, J., Haiman, Z., & Bryan, G. L. 2011, MNRAS, 18, 838

    Google Scholar 

  • Wolfire, M.G., Tielens, A.G.G.M., Hollenbach, D., & Kaufman, M.J. (2008), ApJ, 680, 384–397

    Google Scholar 

  • Wong, T. & Blitz, L. 2002, ApJ, 569, 157

    Google Scholar 

  • Springel, V., 2010, MNRAS, 401, 791

    Google Scholar 

  • Springel, V., 2005, MNRAS, 364, 1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolay Y. Gnedin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gnedin, N.Y. (2016). Modeling Physical Processes at Galactic Scales and Above. In: Revaz, Y., Jablonka, P., Teyssier, R., Mayer, L. (eds) Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality. Saas-Fee Advanced Course, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47890-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47890-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47889-9

  • Online ISBN: 978-3-662-47890-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics