Skip to main content

Glass Forming Ability, Crystallization, and Viscosity of Rapidly Solidified Amorphous Cо100-xZrx and Cu100-xZrx Alloys

  • Chapter
  • 636 Accesses

Abstract

The glass forming ability (GFA) of glassy alloys with Cо-Zr and Cu-Zr as examples is studied, considered, and discussed in relation to their nonisothermal viscous flow and crystallization behavior. The glass forming ability (GFA) and melt fragility number of Angell and its Moynihan interpretation are presented. An FVM interpretation of the melt fragility numbers of Angell and Moynihan is proposed and experimentally proven. It is demonstrated that the exact viscosity measurement of glassy metals allows the determination of FVM parameters describing its temperature dependence. In this way it is possible to calculate the melt fragility number of Angell and to estimate the glass forming ability (GFA) of metallic alloys.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Battezzati L (2004) Mater Sci Eng A375–377:60

    Article  Google Scholar 

  2. Battezzati L, Greer AL (1987) Int J Rapid Solid 3:130

    Google Scholar 

  3. Peker A, Johnson WL (1993) Appl Phys Lett 63:2342

    Article  Google Scholar 

  4. Ma H, Xu J, Ma E (2003) Appl Phys Lett 83:2793

    Article  Google Scholar 

  5. Angell CA (1985) Strong and fragile liquids. In: Ngai K, Wright GB (eds) Relaxation in complex systems. US Department of Commerce, Springfield

    Google Scholar 

  6. Ito K, Moynihan CT, Angell CA (1999) Nature 398(4):492

    Google Scholar 

  7. Battezzati L (2005) Mater Trans 46:2915

    Article  Google Scholar 

  8. Spaepen F (1980) In: Balian R, Kléman M, Poirer JP (eds) Physics of defects, Les Houches 1980, session XXXV. NorthHolland, Amsterdam, p 135

    Google Scholar 

  9. Gladstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York, p 480

    Google Scholar 

  10. Van den Beukel A, Huizer E, Mulder AL, van der Zwaag S (1986) Acta Metall 34:483

    Article  Google Scholar 

  11. Taub AI, Spaepen F (1980) Acta Metall 28:1781

    Article  Google Scholar 

  12. Koebrugge GW, Sietsma J, van den Beukel A (1992) Acta Metall Mater 40:753

    Article  Google Scholar 

  13. Tsao SS, Spaepen F (1985) Acta Metall 33:881

    Article  Google Scholar 

  14. Duine PA, Sietsma J, van den Beukel A (1992) Acta Metall Mater 40:743

    Article  Google Scholar 

  15. Van den Beukel A, Sietsma J (1990) Acta Metall Mater 38:383

    Article  Google Scholar 

  16. Russew K, Zappel BJ, Sommer F (1995) Nonisothermal viscous flow behaviour of Pd40Ni40P20 glassy alloy considered as a free volume related phenomenon. Scr Met Mater 32:271

    Article  Google Scholar 

  17. Moynihan CT (1993) J Am Ceram Soc 76:1081

    Article  Google Scholar 

  18. Russew K, Stojanova L (1993) Viscous flow behaviour and thermal stability of Ni100-xPx metallic glasses from Ni84P16 to Ni79P21. Mater Lett 17:199

    Article  Google Scholar 

  19. Stojanova L, Russew K (1995) Thermal stability and viscous flow of Ni100-xPx and Fe100-xPx metallic glasses. In: Proceedings of 8th international congress on metallurgy and materials, Istanbul, June 1995, p 1421

    Google Scholar 

  20. Russew K, Stojanova L, Yankova S et al (2009) Thermal behavior and melt fragility number of Cu100-xZrx glassy alloys in terms of crystallization and viscous flow. In: 13th international conference on rapidly quenched and metastable materials’2008, Drezden. Journal of Physics: conference series 2009, vol 144, p 012094

    Google Scholar 

  21. Savalia RT, Tewari R, Dey GK, Banerjee S (1996) Acta Metall Mater 44:57

    Article  Google Scholar 

  22. Buschow KHJ (1983) Acta Metall Mater 31:155

    Article  Google Scholar 

  23. Jergel M, Vlasak G, Duhaj P (1989) Phys Status Solidi (a) 111:597

    Article  Google Scholar 

  24. Dyakova V, Kamenova TZ, Varga LK et al (2005) Thermal and mechanical properties of rapidly solidified amorphous and nanocrystalline Co-Zr alloys of high Co content. In: XVI national conference on non-destructive testing, NDT-2005, Sozopol. Scientific communications of STU machine building vol XII no 1(79), p 299

    Google Scholar 

  25. Kim YH, Inoue A, Masumoto T (1990) Mater Trans JIM 31:747

    Article  Google Scholar 

  26. Bakonyi I, Mehner F, Rapp M et al (1995) Zs Metallkde 86:619

    Google Scholar 

  27. Kissinger HE (1957) Anal Chem 29:1702

    Article  Google Scholar 

  28. Russew K, Stojanova L, Yankova S (2006) Free volume model interpretation of rheological properties of Co(100-x) Zrx metallic glasses from Co93Zr7 to Co21.5Zr78.5. J Mater Sci Technol 14(3):144

    Google Scholar 

  29. Yankova S, Stojanova L, Russew K et al (2006) Crystallization behavior of Co100-xZrx amorphous metallic alloys. In: XXI national conference on non-destructive testing, NDT-2006, Sozopol. Scientific communications of STU machine building vol XIII no 3(86), p 119

    Google Scholar 

  30. Yankova S, Stojanova L, Russew K (2006) Rheological behavior of Co100-xZrx amorphous alloys. In: XXI national conference on non-destructive testing, NDT-2006, Sozopol. Scientific communications of STU machine building vol XIII no 3(86), p 113

    Google Scholar 

  31. Russew K, Stojanova L (2006) Crystallization, thermomаgnetic gravimetry and viscous flow features of Co100−xZrx rapidly solidified alloys. In: Proceedings of V intern congress mechanical engineering technologies’06, Varna, Sept 2006, Sec II, p 24

    Google Scholar 

  32. Russew K, Stojanova L, Yankova S (2007) Viscous flow behaviour and thermal stability of Co100-xZrx metallic glasses from Co91Zr9 to Co21.5Zr78.5. In: Balabanova E, Dragieva I (eds) Proceedings of conference on nanoscience and nanotechnology’7. Heron Press, Sofia, p 133

    Google Scholar 

  33. Russew K, Stojanova L, Varga LK et al (2009) Glass forming ability and thermal behavior of binary Co-Zr amorphous alloys. In: Proceedings of national conference on metal science and novel materials’2008, Sofia, p 91

    Google Scholar 

  34. Russew K, Stojanova L, Varga LK, Fazakas E, Yankova S (2009) Glass forming ability and thermal behavior of binary Co-Zr amorphous alloys. J Mater Sci Technol 17(1):29

    Google Scholar 

  35. Stojanova L (2009) Relation between viscous flow and mechanical properties of Co-Zr and Cu-Zr amorphous alloys In: Proceedings of national conference on metal science and novel materials’2008, Sofia, p 96

    Google Scholar 

  36. Yankova S, Stojanova L, Varga LK et al (2008) Viscous flow behavior and mechanical properties of Cu100−xZrx amorphous alloys. In: XXV national conference on non-destructive testing NDT-2008, Sozopol. Scientific communications of STU machine building vol XV no 2(105), p 324

    Google Scholar 

  37. Donghua X, Boonrat L, Gang D, Johnson WL, Garland C (2004) Acta Mater 52:2621

    Article  Google Scholar 

  38. Wang D, Li Y, Sun BB, Sui ML, Lu K, Ma E (2004) Appl Phys Lett 84(20):4029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir Russew .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russew, K., Stojanova, L. (2016). Glass Forming Ability, Crystallization, and Viscosity of Rapidly Solidified Amorphous Cо100-xZrx and Cu100-xZrx Alloys. In: Glassy Metals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47882-0_6

Download citation

Publish with us

Policies and ethics