Skip to main content

Surface-Charged Vesicles for Penetration Enhancement

  • Chapter

Abstract

This chapter aims to summarize the current approaches employed in delivering drugs through the skin, focusing in vesicle systems. In recent years, several vesicles have been developed to improve the permeation of drugs through the skin. Different types of lipid vesicles are formulated depending on the additives used for preparation: Transfersome™, flexosomes, ethosomes, niosomes, vesosomes, invasomes, and polymerosomes. In addition, an exhaustive revision about different strategies to provide positive or negative charge to the liposomes has been reported. Also, the influence of physicochemical properties of drug on the permeation behavior from these vesicles has been analyzed. Finally, new strategies and advances in the use of charged liposomes have also included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akita H, Kudo A, Minoura A, Yamaguchi M, Khalil IA, Moriguchi R et al (2009) Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 30:2940–2949

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Dos Santos N, Gallagher R, Chiu GNC, Shu Y, Li WM et al (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22(2):225–250

    Article  PubMed  CAS  Google Scholar 

  • Antimisiaris SG, Kallinteri P, Fatouros DG (2008) Liposomes and drug delivery. In: Gad SC (ed) Pharmaceutical manufacturing handbook: production and processes. Wiley, Hoboken, pp 443–533

    Chapter  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Babiuk LA, Ewen C, Foldvari M (2000) Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery. J Control Release 66(2-3):199–214

    Article  PubMed  CAS  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Pontarrollo R, Foldvari M (2002) Topical delivery of plasmid DNA using biphasic lipid vesicles (Biphasix). J Pharm Pharmacol 54:1609–1614

    Article  PubMed  CAS  Google Scholar 

  • Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA (2010) Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release 148:266–282

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  PubMed  CAS  Google Scholar 

  • Benson HAE (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2:23–33

    Article  PubMed  CAS  Google Scholar 

  • Bernkop-Schnurch A, Krajicek ME (1998) Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J Control Release 50:215–223

    Article  PubMed  CAS  Google Scholar 

  • Betz G, Aeppli A, Menshutina N, Leuenberger H (2005) In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm 296:44–54

    Article  PubMed  CAS  Google Scholar 

  • Biruss B, Valenta C (2006) Skin permeation of different steroid hormones from polymeric coated liposomal formulations. Eur J Pharm Biopharm 62(2):210–219

    Article  PubMed  CAS  Google Scholar 

  • Bonnett R, Djelal BD, Nguyen A (2001) Physical and chemical studies related to the development of m-THPC (FOSCAN®) for the photodynamic therapy (PDT) of tumours. J Porphyr Phthalocyanines 5(8):652–661

    Article  CAS  Google Scholar 

  • Bouwstra J, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta 1758:2080–2095

    Article  PubMed  CAS  Google Scholar 

  • Casals E, Soler M, Gallardo M, Estelrich J (1998) Electrophoretic behaviour of stearylamine containing liposomes. Langmuir 14(26):7522–7526

    Article  CAS  Google Scholar 

  • Carrer DC, Vermehren C, Bagatolli LA (2008) Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release 132(1):12

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–232

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Blume G (2001) New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, transfersomes. Biochim Biophys Acta 514:191–205

    Article  Google Scholar 

  • Cevc G, Gebauer D (2003) Hydration-driven transport of deformable lipid vesicles through fine pores and skin barrier. Biophys J 84:1010–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cevc G, Blume G, Schatzlein A, Gebauer D, Paul A (1996) The skin: a pathway for systemic treatment with patches and lipid-based agent carriers. Adv Drug Deliv Rev 18:349–378

    Article  CAS  Google Scholar 

  • Choi MJ, Maibach HI (2005) Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 18(5):209–219

    Article  PubMed  CAS  Google Scholar 

  • Coderch L, De Pera M, Pérez-Cullell N, Estelrich J, De la Maza A, Parra JL (1999) The effect of liposomes on skin barrier structure. Skin Pharmacol Appl Skin Physiol 12:235–246

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Bal SM, Romeijn S, Kersten GF, Jiskoot W, Bouwstra JA (2011) Transcutaneous immunization studies in mice using diphtheria toxoid-loaded vesicle formulations and a microneedle array. Pharmacol Res 28(1):145–158

    Article  CAS  Google Scholar 

  • Dobrynin AV, Deshkovski A, Rubinstein M (2000) Adsorption of polyelectrolytes at an oppositely charged surface. Phys Rev Lett 84:3101–3104

    Article  PubMed  CAS  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2008) Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release 127(1):59–69

    Article  PubMed  CAS  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2009) Development of different temoporfin-loaded invasomes—novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloid Surf B Biointerfaces 9(1):198–206

    Article  CAS  Google Scholar 

  • Dragicevic-Curic N, Gräfe S, Gitter B, Winter S, Fahr A (2010) Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability. Int J Pharm 384:100–108

    Article  PubMed  CAS  Google Scholar 

  • Elias P, Feingold K, Menon G, Grayson S, Williams M, Grubauer G (1987) The stratum corneum: two compartment model and its functional implications. In: Shroot B, Shaefer H (eds) Skin pharmacokinetics. Basel, Karger, pp 1–9

    Google Scholar 

  • El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34:203–222

    Article  PubMed  CAS  Google Scholar 

  • Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329:345–356

    Article  PubMed  CAS  Google Scholar 

  • Geusens B, Sanders N, Prow T, Van Gele M, Lambert J (2009) Cutaneous short-interfering RNA therapy. Expert Opin Drug Deliv 6:1333–1349

    Article  PubMed  CAS  Google Scholar 

  • Geusens B, Van Gele M, Braat S, De Smedt SC, Stuart M, Prow T et al (2010) Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultures primary skin cells and in the viable epidermis of ex vivo human skin. Adv Funct Mater 20:4077–4090

    Article  CAS  Google Scholar 

  • Gillet A, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G (2011) Skin penetration behaviour of liposomes as a function of their composition. Eur J Pharm Biopharm 79(1):43–53

    Article  PubMed  CAS  Google Scholar 

  • González-Rodríguez ML, Rabasco AM (2011) Charged liposomes as carriers to enhance the permeation through the skin. Expert Opin Drug Deliv 8(7):857–871

    Article  PubMed  CAS  Google Scholar 

  • González-Rodríguez ML, Barros LB, Palma J, González-Rodríguez PL, Rabasco AM (2007) Application of statistical experimental design to study the formulation variables influencing the coating process of lidocaine liposomes. Int J Pharm 337(1-2):336–345

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Ping Q, Jiang G, Huang L, Tong Y (2003) Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 260:167–173

    Article  PubMed  CAS  Google Scholar 

  • Han I, Kim M, Kim J (2004) Enhanced transfollicular delivery of adriamycin with a liposome and iontophoresis. Exp Dermatol 13:86–92

    Article  PubMed  CAS  Google Scholar 

  • Hasanovic A, Zehl M, Reznicek G, Valenta C (2009) Chitosan-TPP nanoparticles as a possible skin drug delivery system for acyclovir with enhanced stability. J Pharm Pharmacol 61:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Hasanovic A, Hollick C, Fischinger K, Valenta C (2010) Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers. Eur J Pharm Biopharm 75:148–153

    Article  PubMed  CAS  Google Scholar 

  • Honeywell-Nguyen PL, Bouwstra JA (2005) Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today 2:67–74

    Article  CAS  Google Scholar 

  • Hong-Yu W, Kashani-Sabet M, Liggitt D, Moore D, Heath TD, Debs RJ (1999) Topical gene delivery to murine skin. J Invest Dermatol 112:370–375

    Article  Google Scholar 

  • Jain A, Jain SK (2008) PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carr Syst 25(5):403–447

    Article  CAS  Google Scholar 

  • Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3:1972–2009

    Google Scholar 

  • Kim A, Lee EH, Choi SH, Kim CK (2004) In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome. Biomaterials 25:305–313

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa S, Kasamaki M (2006) Enhanced delivery of retinoic acid to skin by cationic liposomes. Chem Pharm Bull 54(2):242–244

    Article  PubMed  CAS  Google Scholar 

  • Knudsen NØ, Rønholt S, Salte RD, Jorgensen L, Thormann T, Basse LH et al (2012a) Calcipotriol delivery into the skin with PEGylated liposomes. Eur J Pharm Biopharm 81(3):532–539

    Article  PubMed  CAS  Google Scholar 

  • Knudsen NØ, Schiffelers RM, Jorgensen L, Hansen J, Frokjaer S, Foged C (2012b) Design of cyclic RKKH peptide-conjugated PEG liposomes targeting the integrin α2β1 receptor. Int J Pharm 428(1-2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4:211–222

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhang Y, Han S, Qu Z, Zhao J, Chen Y et al (2011a) Penetration enhancement of lidocaine hydrochlorid by a novel chitosan coated elastic liposome for transdermal drug delivery. J Biomed Nanotechnol 7(5):704–713

    Article  PubMed  CAS  Google Scholar 

  • Li N, Peng LH, Chen X, Nakagawa S, Gao JQ (2011b) Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers. Vaccine 29(37):6179–6190

    Article  PubMed  CAS  Google Scholar 

  • Mady MM, Darwish MM (2010) Effect of chitosan coating on the characteristics of DPPC liposomes. J Adv Res 1(3):187–191

    Article  Google Scholar 

  • Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P (2005) Preparation and characterization of liposomes encapsulating ketoprofen-cyclodextrin complexes for transdermal drug delivery. Int J Pharm 298:55–67

    Article  PubMed  CAS  Google Scholar 

  • Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P (2006) Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery. Int J Pharm 312(1-2):53

    Article  PubMed  CAS  Google Scholar 

  • Maestrelli F, Capasso G, González-Rodríguez ML, Rabasco AM, Ghelardini C, Mura P (2009) Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes. J Lip Res 19(4):253

    Article  CAS  Google Scholar 

  • Maestrelli F, González-Rodríguez ML, Rabasco AM, Ghelardini C, Mura P (2010) New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics. Int J Pharm 395:222–231

    Article  PubMed  CAS  Google Scholar 

  • Manosroi A, Podjanasoonthon K, Manosroi J (2002) Development of novel topical tranexamic acid liposome formulations. Int J Pharm 235(1-2):61

    Article  PubMed  CAS  Google Scholar 

  • Manosroi A, Kongkaneramit L, Manosroi J (2004) Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm 270(1-2):279–286

    Article  PubMed  CAS  Google Scholar 

  • Mateescu E, Jeppepsen C, Pincus R (1999) Overcharging of a spherical macroion by an oppositely charged polyelectrolyte. Europhys Lett 46:493–498

    Article  CAS  Google Scholar 

  • Martin GP, Lloyd AW (1992) Basic Principles of Liposomes for Drug Use. In: Braun-Falco O, Korting HC, Maibach HI (eds) Liposome dermatics. Springer, Berlin, pp 20–26

    Chapter  Google Scholar 

  • Martini MC (2005) Anatomía y fisiología de la piel. In: Introducción a la Dermofarmacia y a la Cosmetología. Editorial Acribia, S.A., Zaragoza. pp 11–28

    Google Scholar 

  • Mishra D, Dubey V, Abhay A, Asthanaa A, Saraf DK, Jaina NK (2006a) Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 24(22):4847–4855

    Article  PubMed  CAS  Google Scholar 

  • Mishra V, Mahor S, Rawat A, Dubey P, Gupta PN, Singh P, Vyas SP (2006b) Development of novel fusogenic vesosomes for transcutaneous immunization. Vaccine 24(27-28):5559–5570

    Article  PubMed  CAS  Google Scholar 

  • Montenegro L, Panico AM, Ventimiglia A, Bonina FP (1996) In vitro retinoic acid release and skin permeation from different liposome formulations. Int J Pharm 113:89–96

    Article  Google Scholar 

  • Moser K, Kriwet K, Naik A, Kalia YN, Guy RH (2001) Passive skin penetration enhancement and its quantitation in vitro. Eur J Pharm Biopharm 52:103–112

    Article  PubMed  CAS  Google Scholar 

  • Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D et al (2011) A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011:939851

    Google Scholar 

  • Muzzarelli RAA (1988) Carboxymethylated chitins and chitosans. Carbohydr Polym 8:1–21

    Article  CAS  Google Scholar 

  • Nguyen TT, Shklovskii BI (2001) Overcharging of macroion by an oppositely charged polyelectrolyte. Physica A 293:324–338

    Article  CAS  Google Scholar 

  • Ogiso T, Yamaguchi T, Iwaki M, Tanino T, Miyake Y (2001) Effect of positively and negatively charged liposomes on skin permeation of drugs. J Drug Target 9:49–59

    Article  PubMed  CAS  Google Scholar 

  • Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M (2005) Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 106(1):99–110

    Article  PubMed  CAS  Google Scholar 

  • Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta M (2007) In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomed Microdevices 9(4):421–433

    Article  PubMed  CAS  Google Scholar 

  • Paolino D, Cosco D, Cilurzo F, Trapasso E, Morittu VM, Celia C et al (2012) Improved in vitro and in vivo collagen biosynthesis by asiaticoside-loaded ultradeformable vesicles. J Control Release 162(1):143–151

    Article  PubMed  CAS  Google Scholar 

  • Park IK, Park YH (2001) Preparation and structural characterization of water-soluble o-hydroxypropyl chitin derivatives. J Appl Polym Sci 80:2624–2632

    Article  CAS  Google Scholar 

  • Patel Meghana C, Patel Hardik K, Suthar Rajnikant M, Patel Sandip R (2012) Liposomes: as a topical drug delivery system. Int J Pharm Chem Sci 1(1):1

    Google Scholar 

  • Piemi MPY, Korner D, Benita S, Marty JP (1999) Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J Control Release 58(2):177–187

    Article  PubMed  CAS  Google Scholar 

  • Puglia C, Rizza L, Bonina F, Esposito E, Menegatti E, Cortesi R et al (2005) Effect of charge and lipid concentration on in-vivo percutaneous absorption of methyl nicotinate from liposomal vesicles. J Pharm Pharmacol 57(9):1169–1176

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Anand S, Koul V (2009) Flexible polymerosomes—an alternative vehicle for topical delivery. Colloids Surf. B Biointerfaces 72(1):161–166

    Google Scholar 

  • Rengel RG, Barisic KP (2002) High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposome. Eur J Pharm Sci 15:441–448

    Article  Google Scholar 

  • Rodríguez A, Trujillo S (2008) La piel como vía de administración de fármacos formulados en parches transdérmicos. Parte 1: la piel, su estructura y funcionamiento. Revista de la OFIL 18:49–53

    Google Scholar 

  • Salentinig S, Sagalowicz L, Glatter O (2010) Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir 26(14):11670–11679

    Article  PubMed  CAS  Google Scholar 

  • Sashiwa H, Shigemasa Y (1999) Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr Polym 39(2):127–138

    Article  CAS  Google Scholar 

  • Sen A, Daly ME, Hui SW (2002) Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta 1564:5–8

    Google Scholar 

  • Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM (2005) Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release 103(1):123–136

    Article  PubMed  CAS  Google Scholar 

  • Smith JM (2003) Chitosan and transdermal drug delivery. Retinoids 19:72–75

    CAS  Google Scholar 

  • Srisuk P, Thongnopnua P, Raktanonchai U, Kanokpanont S (2012) Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int J Pharm 427(2):426–434

    Article  PubMed  CAS  Google Scholar 

  • Song YK, Kim CK (2006) Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials 27:271

    Article  PubMed  CAS  Google Scholar 

  • Song YK, Hyun SY, Kim HT, Kim CK, Oh JMJ (2011) Transdermal delivery of low molecular weight heparin loaded in flexible liposomes with bioavailability enhancement: comparison with ethosomes. J Microencapsul 28(3):151–158

    Google Scholar 

  • Subongkot T, Duangjit S, Rojanarata T, Opanasopit P, Ngawhirunpat T (2012) Ultradeformable liposomes with terpenes for delivery of hydrophilic compound. J Liposome Res 22(3):254–262

    Google Scholar 

  • Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawaahima Y (1996) Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharmacol Res 13:896–901

    Article  CAS  Google Scholar 

  • Takeuchi H, Kojima H, Yamamoto H (2000) Polymer coating of liposomes with a modified polyvinyl alcohol and their systemic circulation and RES uptake in rats. J Control Release 68:195–205

    Article  PubMed  CAS  Google Scholar 

  • Touitou E, Alkabes M, Dayan N, Eliaz M (1997) Ethosomes: The novel vesicular carriers for enhanced skin delivery. Pharm Res 14:305–306

    Google Scholar 

  • Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M (2000) Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65:403–418

    Article  PubMed  CAS  Google Scholar 

  • Tran R, Ho S, Dea P (2004) Effects of ethanol on lipid bilayers with and without cholesterol: the distearoylphosphatidylcholine system. Biophys Chem 110(1-2):39–47

    Article  PubMed  CAS  Google Scholar 

  • Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70

    Google Scholar 

  • Valenta C, Auner BG (2004) The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 58:279–289

    Article  PubMed  CAS  Google Scholar 

  • Valenta C, Christen A, Bernkop-Schnurch A (1998) Chitosan-EDTA conjugate: a novel polymer for topical gels. J Pharm Pharmacol 50:445–452

    Article  PubMed  CAS  Google Scholar 

  • Villasmil-Sánchez S, Dhrimeur W, Salas SC, Rabasco AM, González-Rodríguez ML (2010) Positively and negatively charged liposomes as carriers for transdermal delivery of sumatriptan: in vitro characterization. Drug Dev Ind Pharm 36(6):666–675

    Article  PubMed  CAS  Google Scholar 

  • Wattiaux R, Jadot M, Warnier-Pirotte MT, De Coninck SW (1997) Cationic lipids destabilize lysosomal membrane in vitro. FEBS Lett 417:199–202

    Article  PubMed  CAS  Google Scholar 

  • Williams AC (2003) Structure and Function of Human skin: Healthy Skin structure and Function. In: Williams A (ed) Transdermal and topical drug delivery. Pharmaceutical Press, London, pp 1–13

    Google Scholar 

  • Yoo J, Shanmugan S, Song CK, Kim DD, Choi HG, Yong CS et al (2008) Skin penetration and retention of L-ascorbic acid 2-phosphate using multilamellar vesicles. Int J Pharm 31:1652–1658

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa González-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

González-Rodríguez, M.L., Cózar-Bernal, M.J., Fini, A., Rabasco, A.M. (2016). Surface-Charged Vesicles for Penetration Enhancement. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47862-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47862-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47861-5

  • Online ISBN: 978-3-662-47862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics