Skip to main content

Abstract

Pharmaceutical nanocrystals were developed at the beginning of the 1990s and entered the pharmaceutical market in the year 2000. With less than one decade, they belong to the most successful nanosystems. In 2005 the first dermal cosmetic products were put on the market. Nanocrystals consist of 100 % active, surrounded by a stabilizer layer. They enhance penetration into the skin via physical effects of increased kinetic solubility (supersaturation), thus increasing concentration gradient, fast dissolution from the nanocrystal depot on the skin, adhesive properties, and size-dependent localization in hair follicles. Nanocrystals do not need to penetrate themselves into the skin. Production is possible on a large industrial scale by bead milling or high-pressure homogenization. Nanocrystal concentrates are on the market available which can easily be incorporated into dermal products by admixing in the production process. By formulation as nanocrystals, poorly soluble molecules are made biologically active in the skin, which were not active before as microcrystals (e.g., flavonoids, up to factor 1000 bioactivity enhancement). First cosmetic products with nanocrystals are meanwhile marketed worldwide, and identical to liposomes the dermal pharmaceutical applications are expected to come. The nanocrystals belong to class I or II of the nanotoxicological classification system (NCS); therefore, they are well tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  PubMed  CAS  Google Scholar 

  • Auweter H, Bohn H, Heger R, Horn D, Siegel B, Siemensmeyer K (2002) Precipitated water-insoluble colorants in colloid disperse form. USA. United States Patent 6,494,924

    Google Scholar 

  • Bangham AD (1963) Physical structure and behavior of lipids and lipid enzymes. Adv Lipid Res 1:65–104

    PubMed  CAS  Google Scholar 

  • Bangham AD (1972) Lipid bilayers and biomembranes. Annu Rev Biochem 41:753–776

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD (1978) Properties and uses of lipid vesicles: an overview. Ann N Y Acad Sci 308:2–7

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  PubMed  CAS  Google Scholar 

  • Blache D, Devaux S, Joubert O, Loreau N, Schneider M, Durand P et al (2006) Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med 41(2):277–284

    Article  PubMed  CAS  Google Scholar 

  • Buckton G, Beezer AE (1992) The relationship between particle size and solubility. Int J Pharm 82(3):R7–R10

    Article  Google Scholar 

  • Calistro P (1987) Deliverance from wrinkles?: Liposomes and ‘anti-aging’ products are the great new hope for smoother skin. Los Angeles Times, 08 Mar 1987

    Google Scholar 

  • Cevc G (1996) Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 13(3–4):257–388

    Article  PubMed  CAS  Google Scholar 

  • Chen R (2013) Tailor-made antioxidative nanocrystals: production and in vitro efficacy. Ph.D. thesis, Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin, Germany

    Google Scholar 

  • Chen R, Sauer M, Durand P, Müller RH, Schäfer K-H, Prost M, et al (2013) Rutin nanocrystals: production, antioxidative capacity, neuroprotection. Controlled Release Society Local Chapter 2013, Ludwigshafen, 21–22 March 2013

    Google Scholar 

  • EU – European Commission Recommendation on the definition of nanomaterial (2011/696/EU), L 275/38, https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission-recommendation-on-the-definition-of-nanomater-18102011_en.pdf)

  • Fernandez M (2007) Nanotechnologies, level 2 – details on nanotechnologies. Greenfacts – Facts on Health and the Environment, Health & Consumer Protection DG of the European Commission. http://ec.europa.eu/health/opinions2/en/nanotechnologies/about-nanotechnologies.htm#7. Accessed 20 04 2013

  • Gassmann P, List M, Schweitzer A, Sucker H (1994) Hydrosols – alternatives for the parenteral application of poorly water soluble drugs. Eur J Pharm Biopharm 40:64–72

    CAS  Google Scholar 

  • Horne RW, Bangham AD, Whittaker VP (1963) Negatively stained lipoprotein membranes. Nature 200:1340

    Article  PubMed  CAS  Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Keck CM, Müller RH (2013a) Auf den Spuren von Kleopatras Schönheit – und warum Nanotechnologie noch schöner macht. Labor More 13(1):8–14

    Google Scholar 

  • Keck CM, Müller RH (2013b) Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84(3):445–448

    Article  PubMed  CAS  Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Rebbeck CL (2003) Microprecipitation method for preparing submicron suspensions. USA. United States Patent 6,607,784

    Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Werling J, Rebbeck CL, Brynjelsen S (2005) Method for preparing submicron particle suspensions. USA. 6,884,436

    Google Scholar 

  • Küchler S, Abdel-Mottaleb M, Lamprecht A, Radowski MR, Haag R, Schäfer-Korting M (2009) Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int J Pharm 377(1–2):169–172

    Article  PubMed  Google Scholar 

  • Lademann J, Otberg N, Richter H, Weigmann HJ, Lindemann U, Schaefer H et al (2001) Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol 14(Suppl 1):17–22

    Article  PubMed  Google Scholar 

  • Lademann J, Otberg N, Jacobi U, Hoffman RM, Blume-Peytavi U (2005) Follicular penetration and targeting. J Investig Dermatol Symp Proc 10(3):301–303

    Article  PubMed  Google Scholar 

  • Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J et al (2007) Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66(2):159–164

    Article  PubMed  CAS  Google Scholar 

  • Lasic DD (1995) Application of liposomes. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, volume 1A: structure and dynamics of membranes: from cells to vesicles. Elsevier, Amsterdam, pp 491–519

    Google Scholar 

  • List M, Sucker H (1988) Pharmaceutical colloidal hydrosols for injection. GB Patent 2,200,048

    Google Scholar 

  • Liversidge GG, Cundy KC, Bishop JF, Czekai DA (1992) Surface modified drug nanoparticles. USA. United States Patent 5,145,684

    Google Scholar 

  • Möschwitzer J, Lemke A (2007) Method for carefully producing ultrafine particle suspensions and ultrafine particles and use thereof. PCT/EP2006/003377

    Google Scholar 

  • Müller RH, Möschwitzer J (2007) Method and device for producing very fine particles and coating such particles. PCT/EP2006/009930

    Google Scholar 

  • Müller RH, Becker R, Kruss B, Peters K (1999) Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. United States Patent 5,858,410

    Google Scholar 

  • Müller RH, Mäder K, Krause K (2000) Verfahren zur schonenden Herstellung von hochfeinen Micro-/Nanopartikeln. Germany. PCT Application PCT/EP00/06535

    Google Scholar 

  • Müller RH, Hanisch J, Mauludin R, Petersen R, Keck CM (2007) Rutin drug nanocrystals for dermal cosmetic application. AAPS annual meeting, San Diego, 9th–15th Nov 2007

    Google Scholar 

  • Müller RH, Gohla S, Keck CM (2011a) State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78:1–9

    Article  PubMed  Google Scholar 

  • Müller RH, Shegokar R, Gohla S, Keck CM (2011b) Nanocrystals: production, cellular drug delivery, current and future products. In: Prokop A (ed) Intracellular delivery: fundamentals and applications, fundamental biomedical technologies. Springer Science + Business Media, B.V. Dordrecht, pp 411–432

    Google Scholar 

  • Patzelt A, Richter H, Knorr F, Schafer U, Lehr CM, Dahne L et al (2011) Selective follicular targeting by modification of the particle sizes. J Control Release 150(1):45–48

    Article  PubMed  CAS  Google Scholar 

  • Petersen RD (2006) Nanocrystals for use in topical formulations and method of production thereof. Germany. PCT/EP2007/009943

    Google Scholar 

  • Prost M (1989) Utilisation de générateur de radicaux libres dans le domaine des dosages biologiques. FR Patent 2,642,526

    Google Scholar 

  • Prost M (1992) Process for the determination by means of free radicals of the antioxidant properties of a living organism or potentially aggressive agents. US Patent 5,135,850

    Google Scholar 

  • Sinambela P, Loeffler BM, Egorov E, Shegokar R, Keck CM, Müller RH (2012) Antioxidant rutin nanocrystals for anti-aging treatment – an in vivo study. Annual meeting of the American Association of Pharmaceutical Scientists, Chicago, 2012

    Google Scholar 

  • US Food and Drug Administration (FDA) (2011) Guidance for industry, Considering whether an FDA-regulated product involves the application of nanotechnology, www.fda.gov./RegulatoryInformation/Guidances/ucm257698.htm

  • Xing M, Zhong W, Xu X, Thomson D (2010) Adhesion force studies of nanofibers and nanoparticles. Langmuir 26(14):11809–11814

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Michel Prost and the company Kirial International/Laboratoires Spiral, France (www.nutriteck.com/sunyatakrl.html), for performing the in vitro tests of the antioxidant capacity of rutin nanocrystals and PharmaSol GmbH Berlin for the provision of production equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Keck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, R.H., Zhai, X., Romero, G.B., Keck, C.M. (2016). Nanocrystals for Passive Dermal Penetration Enhancement. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47862-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47862-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47861-5

  • Online ISBN: 978-3-662-47862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics