Skip to main content
  • 1974 Accesses

Abstract

The skin, and particularly the most outer layer stratum corneum, is an effective barrier for molecules administered by conventional topical formulations (i.e., ointments, creams, hydrogels). Therefore, vehicles and carriers that enhance percutaneous penetration of active pharmaceutical and cosmetic ingredients are of great interest. Microemulsion-based gels (MBGs) are gel-like systems derived from microemulsions, with growing relevance regarding dermal and transdermal delivery. MBGs are thermodynamically stable, viscoelastic, and thermoreversible transparent or opaque systems, depending on their composition and microstructure. MBGs attracted interest in the development of topical formulations with a view to improve drug permeation through the skin for systemic delivery or to achieve its accumulation in the skin for dermal delivery. This chapter focuses on several biocompatible types of MBGs, i.e., lecithin organogels (LOs), pluronic/lecithin organogels (PLOs), gelatin-stabilized MBGs, and lecithin-linker MBGs, which are at various stages of development toward dermal application, from preliminary in vitro experiments to clinical studies, providing a global view of lecithin-based and gelatin-containing MBGs with special focus on their potential for improvement of cutaneous drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commercially available under trademarks Epicuron®, Topcithin® (Degussa Texturant Systems Deutschland GmbH & Co./Lucas Meyer GmbH & Co., Germany), and Lipoid® (Lipoid GmbH, Germany).

  2. 2.

    http://www.jarpharma.com/.

  3. 3.

    PLO is abbreviation for premium lecithin organogels.

  4. 4.

    http://www.transderma.com/.

  5. 5.

    http://www.xenexlabs.com/.

  6. 6.

    http://jarpharmaceutical.com/.

  7. 7.

    http://www.plo-gel.com/Main/index.php.

  8. 8.

    http://www.maximapharmaceuticals.com/.

  9. 9.

    http://www.ijpc.com/.

References

  • Aboofazeli R, Zia H, Needham TE (2002) Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement. Drug Deliv 9(4):239–247

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GP, Juneja M, Agrawal S, Jain SK, Pancholi SS (2004) Preparation and characterization of reverse micelle based organogels of piroxicam. Pharmazie 59:191–193

    PubMed  CAS  Google Scholar 

  • Almeida H, Amaral MH, Lobão P, Lobo JMS (2012) Pluronic F-127 and Pluronic Lecithin Organogel (PLO): main features and their applications in topical and transdermal administration of drugs. J Pharm Pharm Sci 15(4):592–605

    PubMed  Google Scholar 

  • Atkinson PJ, Grimson MJ, Heenan RK, Howe AM, Mackie AR, Robinson BH (1988) Microemulsion-based gels: a small-angle neutron scattering study. Chem Phys Lett 151:494–498

    Article  CAS  Google Scholar 

  • Atkinson PJ, Grimson MJ, Heenan RK, Howe AM, Robinson BH (1989) Structure of microemulsion-based organogels. J Chem Soc Chem Commun 23:1807–1809

    Article  Google Scholar 

  • Atkinson PJ, Robinson BH, Howe AM, Heenan RK (1991) Structure and stability of microemulsion based organogels. J Chem Soc Faraday Trans 87:3389–3397

    Article  CAS  Google Scholar 

  • Barry B (2002) Transdermal drug delivery. In: Aulton ME (ed) Pharmaceutics: the science of dosage form design, 2nd edn. Churchill Livingstone, London

    Google Scholar 

  • Belgamwar VS, Pandey MS, Chauk DS, Surana SJ (2008) Pluronic lecithin organogel. Asian J Pharm 2(3):134–138

    Article  Google Scholar 

  • BiaÅ‚opiotrowicz T, Janczuk B (2002) Surface properties of gelatin films. Langmuir 18:9462–9468

    Article  CAS  Google Scholar 

  • Bleicher J, Bhaskara A, Huyck T, Constantino S, Bardia A, Loprinzi CL, Silberstein PT (2008) Lorazepam, diphenhydramine, and haloperidol transdermal gel for rescue from chemotherapy-induced nausea/vomiting: results of two pilot trials. J Support Oncol 6:27–32

    PubMed  CAS  Google Scholar 

  • Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 17(3):156–165

    Article  CAS  Google Scholar 

  • Bonina FP, Montenegro L, Scrofani N, Esposito E, Cortesi R, Menegatti E, Nastruzzi C (1995) Effects of phospholipid based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. J Control Release 34(1):53–63

    Article  CAS  Google Scholar 

  • Bronaugh RL, Maibach HI (2005) Percutaneous absorption. Marcel Dekke, New York

    Book  Google Scholar 

  • Burnham R, Gregg R, Healy P, Steadward R (1998) The effectiveness of topical diclofenac for lateral epicondylitis. Clin J Sport Med 8(2):78–81

    Article  PubMed  CAS  Google Scholar 

  • Caldararu H, Timmins GS, Gilbert BC (1999) The structure of gelatin water/oil microemulsion sols and gels. An EPR spin-probe and spin-labeling study. Phys Chem Chem Phys 1:5689–5695

    Article  CAS  Google Scholar 

  • Capitani D, Segre AL, Dreher F, Walde P, Luisi PL (1996) Multinuclear NMR investigation of phosphatidylcholine organogels. J Phys Chem 100:15211–15217

    Article  CAS  Google Scholar 

  • Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56:675–711

    Article  PubMed  CAS  Google Scholar 

  • Choukse R, Sangameswaran B (2012) Formulation and evaluation of pluronic lecithin organogel of flurbiprofen. J Biomed Pharm Res 1(1):1–7

    Google Scholar 

  • Cleary GF (2013) Transdermal DDS. Biomaterials science (Third edition). An introduction to materials in medicine. Academic Press, Elsevier, Oxford, UK, pp 1073–1082

    Google Scholar 

  • Collett JH (2009) Poloxamer. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients, 6th edn. American Pharmaceutical Association, Washington, DC, pp 506–509

    Google Scholar 

  • Desai D, Zia H, Quadir A (2007) Evaluation of selected micronized poloxamers as tablet lubricants. Drug Deliv 14(7):413–426

    Article  PubMed  CAS  Google Scholar 

  • Djekic L, Primorac M (2008) The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Int J Pharm 52:231–239

    Article  CAS  Google Scholar 

  • Djekic L, Primorac M, Jockovic J (2011) Phase behaviour, microstructure and ibuprofen solubilization capacity of pseudo-ternary nonionic microemulsions. J Mol Liq 160:81–87

    Article  CAS  Google Scholar 

  • Djekic L, Primorac M, Filipic S, Agbaba D (2012) Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions. Int J Pharm 433(1–2):25–33

    Article  PubMed  CAS  Google Scholar 

  • Dowling TC, Arjomand M, Lin ET, Allen LV Jr, McPherson ML (2004) Relative bioavailability of ketoprofen 20% in a poloxamer-lecithin organogel. Am J Health Syst Pharm 61(23):2541–2544

    PubMed  CAS  Google Scholar 

  • Dreher F, Walde P, Luisi PL, Elsner P (1995) Human skin irritation of a soybean lecithin microemulsion gel and of liposomes. In: Proceedings of the International Symposium on Controlled Release of Bioactive Materials, vol 22. Langmuir, ACS Publications, Washington, DC, p 640–641

    Google Scholar 

  • Dreher F, Walde P, Luisi PL, Elsner P (1996) Human skin irritation studies of a lecithin microemulsion gel and of liposomes. Skin Pharmacol 9:124–129

    Article  PubMed  CAS  Google Scholar 

  • Dreher F, Walde P, Walther P, Wehrli E (1997) Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Control Release 45:131–140

    Article  CAS  Google Scholar 

  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23(12):2709–2728

    Article  PubMed  CAS  Google Scholar 

  • Esposito E, Menegatti E, Cortesi R (2013) Design and characterization of fenretinide containing organogels. Mater Sci Eng C 33:383–389

    Article  CAS  Google Scholar 

  • Fanun M (2009) Microemulsions: properties and applications. CRC Press, Boca Raton

    Google Scholar 

  • Fanun M (2011) Biocompatible microemulsions. In: Fanun M (ed) Colloids in biotechnology. CRC Press Taylor & Francis Group, Boca Raton, pp 417–436

    Google Scholar 

  • Finch PM, Knudsen L, Drummond PD (2009) Reduction of allodynia in patients with complex regional pain syndrome: a double-blind placebo-controlled trial of topical ketamine. Pain 146(1–2):18–25

    Article  PubMed  CAS  Google Scholar 

  • Flores JA, Crowley KL, inventors (1998) Process for the preparation of ketamine ointment. US Patent 5,817,699. 6 Oct 1998

    Google Scholar 

  • Fujii M, Shiozawa K, Henmi T, Yamanouchi S, Suzuki H, Yamashita N, Matsumoto M (1996) Skin permeation of indomethacin from gel formed by fatty-acid ester and phospholipid. Int J Pharm 137:117–124

    Article  CAS  Google Scholar 

  • Giordano J, Daleo C, Sacks SM (1998) Topical ondansetron attenuates nociceptive and inflammatory effects of intradermal capsaicin in humans. Eur J Pharmacol 354(1):R13–R14

    Article  PubMed  CAS  Google Scholar 

  • Glisson JK, Wood RL, Kyle PB, Cleary JD (2005) Bioavailability of promethazine in a topical pluronic lecithin organogel: a pilot study. Int J Pharm Compd 9:242–246

    PubMed  CAS  Google Scholar 

  • Grace DW, Rogers JA, Skeith KJ, Anderson KE (1999) Topical diclofenac versus placebo. A double-blind, randomized clinical trial in patients with osteoarthritis of the knee. J Rheumatol 26:2659–2663

    PubMed  CAS  Google Scholar 

  • Gunstone FD, Harwood JL, Padley FB (eds) (1994) The lipid handbook. Chapman & Hall, London, p 47

    Google Scholar 

  • Haering G, Luisi PL (1986) Hydrocarbon gels from water-in-oil microemulsions. J Phys Chem 90:5892–5895

    Article  CAS  Google Scholar 

  • Hanahan DJ (1997) A guide to phospholipid chemistry. Oxford University Press, New York

    Google Scholar 

  • Heuschkel S, Goebel A, Neubert RHH (2008) Microemulsions—modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 97:603–631

    Article  PubMed  CAS  Google Scholar 

  • Kantaria S, Rees GD, Lawrence MJ (1999) Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J Control Release 60(2–3):355–365

    Article  PubMed  CAS  Google Scholar 

  • Kantaria S, Rees GD, Lawrence MJ (2003) Formulation of electrically conducting microemulsion based organogels. Int J Pharm 250:65–83

    Article  PubMed  CAS  Google Scholar 

  • Kogan A, Garti N (2006) Microemulsion as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123:369–385

    Article  PubMed  CAS  Google Scholar 

  • Kryger A. inventor (2002) Topical testosterone formulations. PCT Int Appl WO2002055020, 18 July 2002

    Google Scholar 

  • Kumar S (2011) Chemical penetration enhancers, an approach for better transdermal drug delivery. Int J Pharm Res Devel 3:87–95

    Google Scholar 

  • Kumar R, Katare OP (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 6(2):Article 40

    Google Scholar 

  • Liu XY (2005) Gelation with small molecules: from formation mechanism to nanostructure architecture. Top Curr Chem 256:1–37

    Article  PubMed  CAS  Google Scholar 

  • Loyd A (2003) The history of pluronic lecithin organogel: an interview with Marty Jones. Int J Pharm Comp 7:180–182

    Google Scholar 

  • Loyd A (2010) Glutathione 25% in pluronic lecithin organogel gel formulations. Int J Pharm Comp 14(6):518

    Google Scholar 

  • Luisi PL, Scartazzini R, Haering G, Schurtenberger P (1990) Organogels from water-in-oil microemulsions. Colloid Polym Sci 268:356–374

    Article  CAS  Google Scholar 

  • Mahjour M, Mauser B, Rashidbaigi Z, Fawzi MB (1990) Effect of egg yolk lecithins and commercial soybean lecithins on in vitro skin permeation of drugs. J Control Release 14:243–252

    Article  CAS  Google Scholar 

  • Mahler P, Mahler F, Duruz H, Ramazzina M, Liguori V, Mautone G (2003) Double-blind, randomized, controlled study on the efficacy and safety of a novel diclofenac epolamine gel formulated with lecithin for the treatment of sprains, strains and contusions. Drugs Exp Clin Res 29:45–52

    PubMed  CAS  Google Scholar 

  • Mathur V, Satrawala Y, Rajput MS (2010) Physical and chemical penetration enhancers in transdermal drug delivery system. Asian J Pharm 4:173–183

    Article  CAS  Google Scholar 

  • Moore J (1982) Final report on the safety assessment of octylpalmitate, cetyl palmitate and isopropyl palmitate. J Am Coll Toxicol 1:13–35

    Article  Google Scholar 

  • Morales ME, Clarés B, López-Viota M, Ruiz MA (2009) Preparation, characterization and in vitro release of new transdermal methimazole as alternative to oral delivery. Drug Deliv 16(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Murdan S (2005a) A review of pluronic lecithin organogel as a topical and transdermal drug delivery system. Hosp Pharm 12:267–270

    Google Scholar 

  • Murdan S (2005b) Organogels in drug delivery. Expert Opin Drug Deliv 2:489–505

    Article  PubMed  CAS  Google Scholar 

  • Nastruzzi C, Gambari R (1994) Antitumor activity of (trans)dermally delivered aromatic tetraamidines. J Control Release 29:53–62

    Article  CAS  Google Scholar 

  • Paice JA, Von Roenn JH, Hudgins JC, Luong L, Krejcie TM, Avram MJ (2008) Morphine bioavailability from a topical gel formulation in volunteers. J Pain Symptom Manage 35(3):314–320

    Article  PubMed  CAS  Google Scholar 

  • Pénzes T, Blazsó G, Aigner Z, Falkay G, Eros I (2005) Topical absorption of piroxicam from organogels–in vitro and in vivo correlation. Int J Pharm 298:47–54

    Article  PubMed  CAS  Google Scholar 

  • Petit C, Zemb T, Pilen MP (1991) Structural study of microemulsion-based gels at the saturation point. Langmuir 7:223–231

    Article  CAS  Google Scholar 

  • PLO GEL. Application in pharmacy compounding, compilation (2011) PLO Gel Kit Pharmamedica Enterprise, Selangor, Malaysia

    Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124

    Article  PubMed  CAS  Google Scholar 

  • Quellet C, Eicke H-F (1986) Mutual gelation of gelatin and water-in-oil microemulsions. Chimia 40:233–238

    CAS  Google Scholar 

  • Raut S, Bhadoriya SS, Uplanchiwara V, Mishrab V, Gahanea A, Jain SK (2012) Lecithin organogel: a unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2(1):8–15

    Article  CAS  Google Scholar 

  • Rees GD, Kantaria S, Lawrence MJ (1998) Microemulsion-based organogels: a novel matrix for transdermal drug delivery. J Pharm Pharmacol 50(Supplement):100

    Article  CAS  Google Scholar 

  • Richards H, Thomas CP, Bowen JL, Heard CM (2006) In vitro transcutaneous delivery of ketoprofen and poly unsaturated fatty acids from a pluronic lecithin organogel vehicle containing fish oil. J Pharm Pharmacol 58(7):903–908

    Article  PubMed  CAS  Google Scholar 

  • Rowe RC, Sheskey PJ, Quinn ME (eds) (2009) Handbook of pharmaceutical excipients, 6th edn. American Pharmaceutical Association, Washington, DC, pp 350–351

    Google Scholar 

  • Sahoo S, Kumar N, Bhattacharya C, Sagiri SS, Jain K, Pal K, Ray SS, Nayak B (2011) Organogels: properties and applications in drug delivery. Des Monomers Polym 14:95–108

    Article  CAS  Google Scholar 

  • Santos P, Watkinson AC, Hadgraft J, Lane ME (2008) Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacol Physiol 21(5):246–259

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Sugibayashi K, Morimoto Y (1988) Effect and mode of action of aliphatic esters on the in vitro skin permeation of nicorandil. Int J Pharm 43:31–40

    Article  CAS  Google Scholar 

  • Scartazzini R, Luisi PL (1988) Organogels from lecithins. J Phys Chem 92:829–833

    Article  CAS  Google Scholar 

  • Schurtenberger P, Cavaco C (1994) Polymer-like lecithin reverse micelles. 1. A light scattering study. Langmuir 10:100–108

    Article  CAS  Google Scholar 

  • Schurtenberger P, Scartazzini R, Magid LJ, Leser ME, Luisi PL (1990) Structural and dynamic properties of polymer-like reverse micelles. J Phys Chem 94(9):3695–3701

    Article  CAS  Google Scholar 

  • Shaikh IM, Jadhav KR, Gide PS, Kadam VJ, Pisal SS (2006) Topical delivery of aceclofenac from lecithin organogels: preformulation study. Curr Drug Deliv 3:417–427

    Article  PubMed  CAS  Google Scholar 

  • Shapiro YE (2011) Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog Polym Sci 36:1184–1253

    Article  CAS  Google Scholar 

  • Shchipunov YA (1995) Lecithin organogels: rheological properties of polymer-like micelles formed in the presence of water. Colloid J 57:556–560

    CAS  Google Scholar 

  • Shchipunov YA (1997) Self-organising structures of lecithin. Russ Chem Rev 66:301–322

    Article  Google Scholar 

  • Shchipunov YA (2001) Lecithin organogel: a micellar system with unique properties. Colloids Surf A Physicochem Eng Asp 183(5):541–554

    Article  Google Scholar 

  • Shchipunov YA, Schmiedel P (1996) Electrorheological phenomena in lecithin-decane-water mixtures. J Colloid Interface Sci 179:201–206

    Article  CAS  Google Scholar 

  • Shchipunov YA, Shumilina EV (1995) Lecithin bridging by hydrogen bonds in the organogel. Mater Sci Eng C Biomim Supramol Syst 3:43–50

    Article  Google Scholar 

  • Shchipunov YA, Shumilina EV (1996) Lecithin organogels: role of polar solvent and nature of intermolecular interactions. Colloid J 58:117–125

    CAS  Google Scholar 

  • Shchipunov YA, Mezzasalma SA, Koper GJM, Hoffmann H (2001) Lecithin organogels with new rheological and scaling behavior. J Phys Chem B 105:10484–10488

    Article  CAS  Google Scholar 

  • Sheng JJ (2009) Lecithin. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients, 6th edn. American Pharmaceutical Association, Washington, DC, pp 385–387

    Google Scholar 

  • Shumilina EV, Khromova Y, Shchipunov YA (2000) A study of the structure of lecithin organic gels by Fourier-transform IR spectroscopy. Zh Fiz Khim 74:1210–1219

    CAS  Google Scholar 

  • Sintov AC, Shapiro L (2004) New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release 95:173–183

    Article  PubMed  CAS  Google Scholar 

  • Smith TJ, Ritter JK, Coyne PJ, Parker GL, Dodson P, Fletcher DS (2011) Testing the cutaneous absorption of lorazepam, diphenhydramine, and haloperidol gel (ABH gel) used for cancer-related nausea. J Clin Oncol 29 (Supplement):Abstract 9021

    Google Scholar 

  • Spacca G, Cacchio A, Forgacs A, Monteforte P, Rovetta G (2005) Analgesic efficacy of a lecithin vehiculated diclofenac epolamine gel in shoulder periarthritis and lateral epicondylitis: a placebo-controlled, multicenter, randomized, double-blind clinical trial. Drugs Exp Clin Res 31:147–154

    PubMed  CAS  Google Scholar 

  • Stroppolo F, Bonadeo D, Chiodo M, Soldati L, Gazzaniga A (1991) In vitro percutaneous penetration of the β2-agonist, broxaterol: influence of several enhancers. In: Scott RC, Guy RH, Hadgraft J, Bod HE (eds) Prediction of percutaneous penetration: methods; measurements, modelling, vol 2. IBC Technical Services Ltd, London, pp 373–379

    Google Scholar 

  • Surjyanarayan M, Snigdha MS, Krutika KK (2010) Lecithin stabilized organogel: design and development for topical application of clobetasol propionate. Int J Pharm Tech Res 2(2):1133–1138

    Google Scholar 

  • Szuhaj BF (1989) Lecithins sources, manufacture and uses. American Oil Chemist’s Society, Champaign

    Google Scholar 

  • Tanaka F (2006) Theory of molecular association and thermoreversible gelation. In: Weiss RG, Terech P (eds) Molecular gels: materials with self-assembled fibrillar networks. Springer, Dordrecht, pp 17–78

    Chapter  Google Scholar 

  • Trotta M, Gallarate M, Pattarino F, Carlotti ME (1999) Investigation of the phase behavior of systems containing lecithin and 2-acyl lysolecithin derivatives. Int J Pharm 190:83–89

    Article  PubMed  CAS  Google Scholar 

  • Vintiloiu A, Leroux J-C (2008) Organogels and their use in drug delivery — a review. J Control Release 125:179–192

    Article  PubMed  CAS  Google Scholar 

  • Wade A, Weller PJ (1994) Handbook of pharmaceutical excipients, 2nd edn. Ame Pharm Association, Washington, DC

    Google Scholar 

  • Weiland A, Protus BMcC, Kimbrel J, Grauer P (2012) Determination of the transdermal absorption of chlorpromazine in pluronic lecithin organogel (PLO) gel in healthy adults. Hospiscript. (www.hospiscript.com)

  • Wendel A (1995) Kirk-Othmer encyclopedia of chemical technology, vol 15. John Wiley & Sons, New York, p 192

    Google Scholar 

  • Williams A (2003) Transdermal and topical drug delivery. Pharmaceutical Press, London

    Google Scholar 

  • Willimann H, Luisi PL (1991) Lecithin organogels as matrix for transdermal transport of drugs. Biochem Biophys Res Commun 177:897–900

    Article  PubMed  CAS  Google Scholar 

  • Willimann H, Walde P, Luisi PL, Gazzaniga A, Stroppolo F (1992) Lecithin organogels as matrix for transdermal transport of drugs. J Pharm Sci 81:871–874

    Article  PubMed  CAS  Google Scholar 

  • Xuan X-Y, Cheng Y-L, Acosta E (2012) Lecithin-linker microemulsion gelatin gels for extended drug delivery. Pharmaceutics 4:104–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan JS (2009) Linker-based lecithin microemulsions as transdermal drug delivery systems. PhD thesis, Department of Chemical Engineering and Applied Chemistry, University of Toronto

    Google Scholar 

  • Yuan JS, Ansari M, Samaan M, Acosta EJ (2008) Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int J Pharm 349(1–2):130–143

    Article  PubMed  CAS  Google Scholar 

  • Yurtov EV, Murashova NM (2003) Lecithin organogels in a hydrocarbon oil. Chem Mater Sci Colloid J 65:114–118

    CAS  Google Scholar 

  • Zhao X-Y, Cao Q, Zheng L-Q, Zhang G-Y (2006) Rheological properties and microstructures of gelatin-containing microemulsion-based organogels. Colloids Surf A Physicochem Eng Asp 281:67–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana Djekic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Djekic, L., Primorac, M. (2016). Percutaneous Penetration Enhancement Potential of Microemulsion-Based Organogels. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47862-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47862-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47861-5

  • Online ISBN: 978-3-662-47862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics