Skip to main content

Polymeric Nano (and Micro) Particles as Carriers for Enhanced Skin Penetration

  • Chapter

Abstract

Advances in drug formulation engineering and the development of nanotechnology for drug delivery applications have recently attracted a major attention. The use of polymeric nanoparticles for the application of local and systemic drugs to the skin is one of the important applications of nanotechnology in the pharmaceutical field. The skin provides a natural protective barrier against particle penetration, but there are several reports about the accumulation in hair follicles and interaction with diseased skin. The following chapter will consider the possible potential of using micro- and nanoparticles for dermal and transdermal drug delivery. Their ability to enhance transdermal drug permeation will be discussed, and an improved understanding of their interaction with the skin will also be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Mottaleb MMA, Neuman D, Lamprecht A (2011) Lipid nanocapsules for dermal applications: a comparative study of lipid based versus polymer based nanocarriers. Eur J Pharm Biopharm 79:36–42

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Mottaleb MMA, Moulari B, Beduneau A, Pellequer Y, Lamprecht A (2012a) Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur J Pharm Biopharm 82:151–157

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Mottaleb MMA, Moulari B, Beduneau A, Pellequer Y, Lamprecht A (2012b) Surface charge dependent nanoparticles accumulation in inflamed skin. J Pharm Sci 101:4231–4239

    Article  PubMed  CAS  Google Scholar 

  • Allemann E, Gurny R, Doelker E (1992) Preparation of aqueous polymeric nanodispersions by a reversible salting out process: influence of process parameters on particle size. Int J Pharm 87:247–253

    Article  CAS  Google Scholar 

  • Allemann E, Gurny R, Doelker E (1993) Drug loaded nanoparticles preparation, methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    CAS  Google Scholar 

  • Alvarez-Roman R, Naik A, Kalia Y, Guy R, Fessi H (2004) Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 21:1818–1825

    Article  PubMed  CAS  Google Scholar 

  • Batheja P, Sheihet L, Kohn J, Singer A, Michniak-kohn B (2011) Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J Control Release 149:159–167

    Article  PubMed  CAS  Google Scholar 

  • Carcaboso A, Hernandez R, Igartua M, Rosas J, Patarroyo M, Pedraz J (2004) Enhancing immunogenicity and reducing dose of microparticulated synthetic vaccines: single intradermal administration. Pharm Res 21:121–126

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Vierl U (2010) Nanotechnology and the transdermal rout A state of the art and critical appraisal. J Control Release 141:277–299

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Endres R, Erickson C, Weis K, McGregor M, Kawaoka Y, Payne L (2000) Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat Med 6:1187–1190

    Article  PubMed  CAS  Google Scholar 

  • Cosco D, Celia C, Cilurzo F, Trapasso E, Paolino D (2008) Colloidal carriers for the enhanced delivery through the skin. Expert Opin Drug Deliv 5:737–755

    Article  PubMed  CAS  Google Scholar 

  • Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65:21–23

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75:409–419

    Article  PubMed  CAS  Google Scholar 

  • Davis A, Gyurik R, Hadgraft J, Pellett M, Walters K (2002) Formulation strategies for modulating skin permeation. In: Walters K (ed) Dermatological and transdermal formulations. Marcel Dekker, New York

    Google Scholar 

  • de Jalon E, Blanco-Prieto M, Ygartua P, Santoyo S (2001a) PLGA microparticles: possible vehicles for topical drug delivery. Int J Pharm 226:181–184

    Article  PubMed  Google Scholar 

  • de Jalon E, Blanco-Prieto M, Ygartua P, Santoyo S (2001b) Topical application of acyclovir-loaded microparticles: quantification of the drug in porcine skin layers. J Control Release 75:191–197

    Article  PubMed  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet J, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  • Guterres S, Alves M, Pohlmann A (2007) Polymeric nanoparticles, nanospheres and nanocapsules for cutaneous applications. Drug Target Insights 2:147–157

    PubMed  PubMed Central  Google Scholar 

  • Katas H, Hussain Z, Ling T (2012) Chitosan nanoparticles as a percutaneous drug delivery system for hydrocortisone. J Nanomater articles ID 372725: 11 pages

    Google Scholar 

  • Katti DS, Lakshmi S, Langer R, Laurencin CT (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54:933–961

    Article  PubMed  CAS  Google Scholar 

  • Kendall M, Mitchell T, Wrighton-Smith P (2004) Intradermal ballistic delivery of microparticles into excised human skin for pharmaceutical applications. J Biomech 37:1733–1741

    Article  PubMed  Google Scholar 

  • Khoury-Fallouh AN, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F (1986) Development of a new process for the manufacture of poly isobutylcyanoacrylate nanocapsules. Int J Pharm 28:125–136

    Article  Google Scholar 

  • Kis E, Winter G, Myschik J (2012) Devices for intradermal vaccination. Vaccine 30:523–538

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Alpar H (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particles size and charge. Int J Pharm 275:13–17

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Wonganan P, Sandoval M, Li X, Zhu S, Cui Z (2012) Microneedle mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles. J Control Release 163:230–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256

    Article  PubMed  CAS  Google Scholar 

  • Lademann J, Richter H, Golz K, Zastrow L, Sterry W, Patzelt A (2008) Influence of microparticles on the homogeneity of distribution of topically applied substances. Skin Pharmacol Physiol 21:274–282

    Article  PubMed  CAS  Google Scholar 

  • Lboutounne H, Faivre V, Falson F, Pirot F (2004) Characterization of transport of chlorhexidine-loaded nanocapsules through hairless and wistar rat skin. Skin Pharmacol Physiol 17:176–182

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Ciotti S, Valiveti S, Grice J, Cross S (2008) Targeting the pilosebaceous gland. In: Walters H, Roberts M (eds) Dermatologic, cosmeceutic and cosmetic development. Informa Healthcare, New York, pp 169–188

    Google Scholar 

  • Lu S, Qu R, Forcada J (2009) Preparation of magnetic polymeric composite nanoparticles by seeded emulsion polymerization. Mater Lett 63:770–772

    Article  CAS  Google Scholar 

  • Luengo L, Weiss B, Schneider M, Ehlers A, Stracke F, Konig K, Kostka K, Lehr C, Schaefer U (2006) Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol Physiol 19:190–197

    Article  PubMed  CAS  Google Scholar 

  • Marro D, Guy R, Delgado-Charro M (2001) Characterization of the iontophoretic permselectivity properties of human and pig skin. J Control Release 70:213–217

    Article  PubMed  CAS  Google Scholar 

  • Mattheolabakis G, Lagoumintzis G, Panagi Z, Papadimitriou E, Partidos C, Avgoustakis K (2010) Transcutaneous delivery of nanoencapsulated antigen: induction of immune response. Int J Pharm 385:187–193

    Article  PubMed  CAS  Google Scholar 

  • Meziani M, Pathak P, Hurezeanu R, Thies M, Enick R, Sun Y (2004) Supercritical fluid processing technique for nanoscale polymer particles. Angew Chem Int Ed 43:704–707

    Article  CAS  Google Scholar 

  • Miyazaki S, Takahashi A, Kubo K, Loebenberg R, Bachynsky J (2003) Poly n-butylcyanoacrylate (PNBCA) nanocapsules as a carrier for NSAIDs: in vitro release and in vivo skin penetration. J Pharm Pharm Sci 6:240–245

    CAS  Google Scholar 

  • Nair L, Laurencin C (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Olvera-Martinez B, Cazeres-Delgadillo J, Calderilla-Fajardo S, Villalobos-Garcia R, Ganem-Quintanar A, Quintanar-Guerrero D (2005) Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification- diffusion technique: penetration across the stratum corneum. J Pharm Sci 94:1552–1559

    Article  PubMed  CAS  Google Scholar 

  • Park J, Ye M, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10:146–161

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Bharadia P, Patel M (2010) Skin penetration enhancement techniques – physical approaches. Int J Pharm Appl Sci 1:62–72

    Google Scholar 

  • Pathan I, Setty C (2009) Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res 8:173–179

    Article  CAS  Google Scholar 

  • Patzelt A, Richter H, Knorr F, Schaefer U, Lehr C, Daehne L, Sterry W, Lademann J (2011) Selective follicular targeting by modification of the particle sizes. J Control Release 150:45–48

    Article  PubMed  CAS  Google Scholar 

  • Pinto Reis C, Neufeld R, Ribeiro A, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug loaded polymeric nanoparticles. Nanomedicine 2:8–21

    Article  PubMed  CAS  Google Scholar 

  • Polakovic M, Gorner T, Gref R, Dellacherie E (1999) Lidocaine loaded biodegradable nanospheres. II. Modeling of drug release. J Control Release 60:169–177

    Article  PubMed  CAS  Google Scholar 

  • Prow T, Grice J, Lin L, Faye R, Butler M, Becker W, Wurm E, Yoong C, Robertson T, Soyer H, Roberts M (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–491

    Article  PubMed  CAS  Google Scholar 

  • Rao J, Geckeler K (2011) Polymer nanoparticles : preparation techniques and size control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  • Rinberg D, Simonnet C, Groisman A (2005) Pneumatic capillary gun for ballistic delivery of microparticles. Appl Phys Lett 87:014103–3

    Article  CAS  Google Scholar 

  • Roberts M (2006) The latest science (including safety) on nanotechnology and skin penetration. FDA public hearing on the science of nanomaterials, Washington, DC

    Google Scholar 

  • Rolland A, Wagner N, Chatelus A, Shroot B, Schaefer H (1993) Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm Res 10:1738–1744

    Article  PubMed  CAS  Google Scholar 

  • Rosado C, Silva C, Reis C (2013) Hydrocortisone loaded poly (є-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm Dev Technol. 18(3):710–718.

    Google Scholar 

  • Rossler B, Kreuter J, Ross G (1994) Effect of collage microparticles on the stability of retinol and its absorption into hairless mouse skin in vitro. Pharmazie 49:175–179

    PubMed  CAS  Google Scholar 

  • Santoyo S, De Jalòn E, Ygartua P, Renedo M, Blanco-Prieto M (2002) Optimization of topical cidofovir penetration using microparticles. Int J Pharm 242:107–113

    Article  PubMed  CAS  Google Scholar 

  • Shah P, Desai P, Singh M (2012) Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release 158:336–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shim J, Kang H, Park W, Han S, Kim J, Chang I (2004) Transdermal delivery of minoxidil with block copolymer nanoparticles. J Control Release 97:477–484

    Article  PubMed  CAS  Google Scholar 

  • Soppimath K, Aminabhavi T, Kulkarni A, Rudzinski W (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  PubMed  CAS  Google Scholar 

  • Sumian C, Pitre F, Gauthier B, Bouclier M, Mordon S (1999) A new method to improve penetration depth of dyes into the follicular duct: potential application for laser hair removal. J Am Acad Dermatol 41:172–175

    Article  PubMed  CAS  Google Scholar 

  • Tallau N, Denis A, Padois K, Bertholle V, Huynh T, Haftek M, Falson F, Pirot F (2010) Skin absorption modulation: innovative non-hazardous technologies for topical formulations. Open Dermatol J 4:3–9

    Google Scholar 

  • Tan Q, Liu W, Guo C, Zhai G (2011) Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine 6:1621–1630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toll R, Jacobi U, Ritcher H, Lademann J, Schaefer H, Blume-Peytavi U (2004) Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 123:168–176

    Article  PubMed  CAS  Google Scholar 

  • Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, Schaefer H, Katlama C, Sterry W, Autran B, Blume-Peytavi U, Combadiere B (2008) Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol 180:1482–1489

    Article  PubMed  CAS  Google Scholar 

  • Watnasirichaikul S, Davies NM, Rades T, Tucker IG (2000) Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res 17:684–689

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Landfester K, Musyanovych A, Guy R (2010) Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol Physiol 23:117–123

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu C, Huang C (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona M. A. Abdel-Mottaleb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdel-Mottaleb, M.M.A., Lamprecht, A. (2016). Polymeric Nano (and Micro) Particles as Carriers for Enhanced Skin Penetration. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47862-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47862-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47861-5

  • Online ISBN: 978-3-662-47862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics