Advertisement

Formation Control of Swarm Systems

  • Xiwang DongEmail author
Chapter
  • 902 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter investigates time-varying formation control problems for high-order linear time-invariant (LTI) swarm systems and unmanned aerial vehicle (UAV) swarm systems. First, time-varying state formation control problems for high-order LTI swarm systems with time delays and time-varying output formation control problems for high-order LTI swarm systems are studied, respectively. Necessary and sufficient conditions for swarm systems to achieve time-varying state/output formation, necessary and sufficient conditions for state/output formation feasibilities, and explicit expressions of state/output formation reference functions are presented. Then approaches to specify the motion modes of state/output formation references, approaches to expand feasible state/output formation sets, and approaches to design the state/output formation protocols are proposed, respectively. Moreover, necessary and sufficient conditions for UAV swarm systems to achieve time-varying formations and approaches to design the protocol are proposed. Autonomous time-varying formation control experiments are performed using five quadrotor UAVs in outdoor environment to demonstrate the theoretical results.

Keywords

Swarm Systems Quadrotor UAV Time-varying Formation Control Problem Formulation Unmanned Aerial Vehicles (UAV) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Williamson WR, Abdel-Hafez MF, Rhee I et al (2007) An instrumentation system applied to formation flight. IEEE Trans Control Syst Technol 15(1):75–85CrossRefGoogle Scholar
  2. 2.
    Nigam N, Bieniawski S, Kroo I et al (2012) Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans Control Syst Technol 20(5):1236–1251CrossRefGoogle Scholar
  3. 3.
    Kopfstedt T, Mukai M, Fujita M, et al (2008) Control of formations of UAVs for surveillance and reconnaissance missions. In: Proceedings of the 17th IFAC World Congress, pp 6–11Google Scholar
  4. 4.
    Han J, Xu Y, Di L et al (2013) Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J Intell Robot Syst 70(1–4):401–410CrossRefGoogle Scholar
  5. 5.
    Pack DJ, DeLima P, Toussaint GJ et al (2009) Cooperative control of UAVs for localization of intermittently emitting mobile targets. IEEE Trans Syst Man Cybern B Cybern 39(4):959–970CrossRefGoogle Scholar
  6. 6.
    Sivakumar A, Tan CKY (2010) UAV swarm coordination using cooperative control for establishing a wireless communications backbone. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp 1157–1164Google Scholar
  7. 7.
    Wang PKC (1991) Navigation strategies for multiple autonomous mobile robots moving in formation. J Robotic Syst 8(2):177–195CrossRefzbMATHGoogle Scholar
  8. 8.
    Balch T, Arkin R (1998) Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom 14(6):926–939CrossRefGoogle Scholar
  9. 9.
    Lewis M, Tan K (1997) High precision formation control of mobile robots using virtual structures. Auton Robot 4(4):387–403CrossRefGoogle Scholar
  10. 10.
    Beard RW, Lawton J, Hadaegh FY (2001) A coordination architecture for spacecraft formation control. IEEE Trans Control Syst Technol 9(6):777–790CrossRefGoogle Scholar
  11. 11.
    Ren W (2007) Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl 1(2):505–512CrossRefGoogle Scholar
  12. 12.
    Ren W, Sorensen N (2008) Distributed coordination architecture for multi-robot formation control. Robot Auton Syst 56(4):324–333CrossRefzbMATHGoogle Scholar
  13. 13.
    Xiao F, Wang L, Chen J et al (2009) Finite-time formation control for multi-agent systems. Automatica 45(11):2605–2611MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xie GM, Wang L (2009) Moving formation convergence of a group of mobile robots via decentralised information feedback. Int J Syst Sci 40(10):1019–1027MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu CL, Tian YP (2009) Formation control of multi-agent systems with heterogeneous communication delays. Int J Syst Sci 40(6):627–636MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lafferriere G, Williams A, Caughman J et al (2005) Decentralized control of vehicle formations. Syst Control Lett 54(9):899–910MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476MathSciNetCrossRefGoogle Scholar
  18. 18.
    Porfiri M, Roberson DG, Stilwell DJ (2007) Tracking and formation control of multiple autonomous agents: a two-level consensus approach. Automatica 43(8):1318–1328MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lin ZY, Francis B, Maggiore M (2005) Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans Autom Control 50(1):121–127MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ma CQ, Zhang JF (2012) On formability of linear continuous-time multi-agent systems. J Syst Sci Complex 25(1):13–29MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xi JX, Cai N, Zhong YS (2010) Consensus problems for high-order linear time-invariant swarm systems. Phys A 389(24):5619–5627CrossRefGoogle Scholar
  22. 22.
    Zhang XM, Wu M, She JH et al (2005) Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41(8):1405–1412MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Du B, Lam J, Shu Z et al (2009) A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components. IET Control Theory Appl 3(4):383–390MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xi JX, Shi ZY, Zhong YS (2011) Consensus analysis and design for high-order linear swarm systems with time-varying delays. Phys A 390(23–24):4114–4123CrossRefGoogle Scholar
  25. 25.
    Ren W (2009) Collective motion from consensus with Cartesian coordinate coupling. IEEE Trans Autom Control 54(6):1330–1335CrossRefGoogle Scholar
  26. 26.
    Lin P, Jia YM (2010) Distributed rotating formation control of multi-agent systems. Syst Control Lett 59(10):587–595MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xi JX, Shi ZY, Zhong YS (2012) Output consensus for high-order linear time-invariant swarm systems. Int J Control 85(4):350–360MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    He Y, Wang Q (2006) An improved ILMI method for static output feedback control with application to multivariable PID control. IEEE Trans Autom Control 51(10):1678–1683CrossRefGoogle Scholar
  29. 29.
    Bayezit I, Fidan B (2013) Distributed cohesive motion control of flight vehicle formations. IEEE Trans Ind Electron 60(12):5763–5772CrossRefGoogle Scholar
  30. 30.
    Karimoddini A, Lin H, Chen BM et al (2013) Hybrid three-dimensional formation control for unmanned helicopters. Automatica 49(2):424–433MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang XH, Yadav V, Balakrishnan SN (2007) Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans Control Syst Technol 15(4):672–679CrossRefGoogle Scholar
  32. 32.
    Wang JN, Xin M (2013) Integrated optimal formation control of multiple unmanned aerial vehicles. IEEE Trans Control Syst Technol 21(5):1731–1744MathSciNetCrossRefGoogle Scholar
  33. 33.
    Seo J, Kim Y, Kim S et al (2012) Consensus-based reconfigurable controller design for unmanned aerial vehicle formation flight. J Aerosp Eng 226(7):817–829MathSciNetGoogle Scholar
  34. 34.
    Zahreddine Z, El-Shehawey EF (1988) On the stability of a system of differential equations with complex coefficients. Indian J Pure Appl Math 19(10):963–972MathSciNetzbMATHGoogle Scholar
  35. 35.
    XAircraft. http://www.xaircraft.comGoogle Scholar
  36. 36.
    Tayebi A, McGilvray S (2006) Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Control Syst Technol 14(3):562–571CrossRefGoogle Scholar
  37. 37.
    Abdessameud A, Tayebi A (2011) Formation control of VTOL unmanned aerial vehicles with communication delays. Automatica 47(11):2383–2394MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Turpin M, Michael N, Kumar V (2012) Decentralized formation control with variable shapes for aerial robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 23–30Google Scholar
  39. 39.
    Dong XW, Xi JX, Lu G et al (2014) Formation control for high-order linear time-invariant multi-agent systems with time delays. IEEE Trans Control Netw Syst 1(3):232–240MathSciNetCrossRefGoogle Scholar
  40. 40.
    Dong XW, Shi ZY, Lu G et al (2015) Time-varying output formation control for high-order linear time-invariant swarm systems. Inf Sci 298(20):36–52MathSciNetCrossRefGoogle Scholar
  41. 41.
    Dong XW, Yu BC, Shi ZY et al (2015) Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans Control Syst Technol 23(1):340–348CrossRefGoogle Scholar
  42. 42.
    Dong XW, Shi ZY, Lu G et al (2014) Time-varying formation control for high-order linear swarm systems with switching interaction topologies. IET Control Theory Appl 8(18):2162–2170MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Automation Science and Electronic EngineeringBeihang UniversityBeijingChina

Personalised recommendations