Advertisement

Machine Vision pp 223-365 | Cite as

Methods of Image Acquisition

  • Jürgen BeyererEmail author
  • Fernando Puente León
  • Christian Frese
Chapter

Abstract

This chapter covers different methods for image acquisition in automated visual inspection. Selecting the appropriate acquisition method depends on the properties of interest of the investigated object (Fig. 7.1):

  • optical properties like reflectance, color, texture, and index of refraction as a function of position, or

  • geometrical properties like the three-dimensional shape of the object.

Keywords

Optical Coherence Tomography Test Object Reference Object Optical Path Difference Microlens Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Bernd Aatz, Dieter Müller, and Heimo Weber. Interferometrisches Messen mechanischer Bauteile. In Bernd Breuckmann, editor, Bildverarbeitung und optische Messtechnik in der industriellen Praxis, pages 231–255. Franzis, 1993.Google Scholar
  2. [2]
    Hillar Aben. Integrated photoelasticity. McGraw-Hill, 1979.Google Scholar
  3. [3]
    Edward Adelson and James Bergen. The Plenoptic Function and the Elements of Early Vision. In Michael Landy and J. Anthony Movshon, editors, Computational Models of Visual Processing, pages 3–20. MIT Press, 1991.Google Scholar
  4. [4]
    Edward H. Adelson and John Y. A. Wang. Single Lens Stereo with a Plenoptic Camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):99–106, 1992.CrossRefGoogle Scholar
  5. [5]
    Jochen Aderhold and Peter Meinlschmidt. Grundlagen der Infrarot-Thermographie. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 360–363. Fraunhofer IRB Verlag, Stuttgart, 1st edition, 2007.Google Scholar
  6. [6]
    Jochen Aderhold and Peter Meinlschmidt. Online-Thermographie als Werkzeug zur Qualitätskontrolle. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 364–368. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  7. [7]
    Jochen Aderhold and Peter Meinlschmidt. Spektroskopische Charakterisierung von Oberflächen. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 145–151. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  8. [8]
    Stephen Anderson. Optical Coherence Tomography. SPIE Professional, pages 16–19, 2014.Google Scholar
  9. [9]
    David Aspnes. The Accurate Determination of Optical Properties by Ellipsometry. In Edward Palik, editor, Handbook of Optical Constants of Solids, pages 89–112. Academic Press, 1985.Google Scholar
  10. [10]
    Anand Asundi. Photoelasticity and Moiré. In Pramod Rastogi, editor, Optical Measurement Techniques and Applications, pages 183–215. Artech House, 1997.Google Scholar
  11. [11]
    Jonathan Balzer. Regularisierung des Deflektometrieproblems – Grundlagen und Anwendung. PhD thesis, Universität Karlsruhe (TH), 2008.Google Scholar
  12. [12]
    Jonathan Balzer and Stefan Werling. Principles of Shape from Specular Reflection. Measurement, 43(10):1305–1317, 2010.CrossRefGoogle Scholar
  13. [13]
    Bruce Batchelor, editor. Machine Vision Handbook. Springer, 2012.Google Scholar
  14. [14]
    Bruce Batchelor, Denys Hill, and David Hodgson, editors. Automated visual inspection. IFS, 1985.Google Scholar
  15. [15]
    Wilfried Bauer. Weißlichtinterferometrie. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 297–301. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  16. [16]
    Sarah Bee and Mark Honeywood. Colour Sorting in the Food Industry. In Mark Graves and Bruce Batchelor, editors, Machine vision for the inspection of natural products. Springer, 2003.Google Scholar
  17. [17]
    Rolf Behrendt, Peter Schmitt, and Norman Uhlmann. Bildgebende Röntgensensoren. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 72–74. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  18. [18]
    Wolfgang Beitz and Karl-Heinz Küttner, editors. Dubbel Handbook of Mechanical Engineering. Springer, 1994.Google Scholar
  19. [19]
    Roy Berns, Fred Billmeyer, and Max Saltzman. Billmeyer and Saltzman’s principles of color technology. Wiley, 3rd edition, 2000.Google Scholar
  20. [20]
    Jürgen Beyerer and Denis Pérard. Automatische Inspektion spiegelnder Freiformflächen anhand von Rasterreflexionen. Technisches Messen, 64(10):394–400, 1997.Google Scholar
  21. [21]
    Jürgen Beyerer and Mohammed Seiraffi. Qualitätssicherung in Kernmachereien und Gießereien durch den Einsatz automatischer Sichtprüfungssysteme. Gießerei-Praxis, (6):245–254, 2000.Google Scholar
  22. [22]
    Jürgen Beyerer and Mohammed Seiraffi. Verfahren und Vorrichtung zur Objekterkennung. Patent PCT/DE 1999/004070, 2000.Google Scholar
  23. [23]
    Jürgen Beyerer, Dirk vom Stein, and Thomas Klawitter. Automatische Sichtprüfung belüfteter Bremsscheiben. Giesserei-Erfahrungsaustausch, 47(7):283–286, 2003.Google Scholar
  24. [24]
    Stephan Bichmann. 3-D-Formprüfinterferometrie. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, page 62. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  25. [25]
    Gerra Bosco. James L. Waters Symposium 2009 on near-infrared spectroscopy: meeting report. Trends in Analytical Chemistry, 29(3):197–208, 2010.Google Scholar
  26. [26]
    David Brewster. Experiments on the depolarisation of light as exhibited by various mineral, animal, and vegetable bodies, with a reference of the phenomena to the general principles of polarisation. Philosophical Transactions of the Royal Society of London, 105:29–53, 1815.CrossRefGoogle Scholar
  27. [27]
    David Brewster. On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation. Philosophical Transactions of the Royal Society of London, 106:156–178, 1816.CrossRefGoogle Scholar
  28. [28]
    Rainer Brodmann. Autofokussensor. In Tilo Pfeifer, editor, Optoelektronische Verfahren zur Messung geometrischer Größen in der Fertigung, pages 123–139. expert Verlag, 1993.Google Scholar
  29. [29]
    Rainer Brodmann and Walter Kimmelmann. Streulichtsensor. In Tilo Pfeifer, editor, Optoelektronische Verfahren zur Messung geometrischer Größen in der Fertigung, pages 96–122. expert Verlag, 1993.Google Scholar
  30. [30]
    Joel G. Broida and S. Gill Williamson. A comprehensive introduction to linear algebra. Addison- Wesley, 1989.Google Scholar
  31. [31]
    Ilja Bronshtein, Konstantin Semendyayev, Gerhard Musiol, and Heiner Mühlig. Handbook of Mathematics. Springer, 6th edition, 2015.Google Scholar
  32. [32]
    Bundesamt für Strahlenschutz (Hrsg.). Verordnung über den Schutz vor Schäden durch Röntgenstrahlung (Röntgenverordnung – RöV). http://www.bfs.de/de/bfs/recht/rsh/volltext/1A_Atomrecht/1A_14_RoeV_1011.pdf, 2011.
  33. [33]
    Wai Chan, Kriti Charan, Dharmpal Takhar, Kevin Kelly, Richard Baraniuk, and Daniel Mittleman. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93(12):121105, 2008.CrossRefGoogle Scholar
  34. [34]
    CMDITR Photonics Wiki. Terahertz Radiation. http://www.photonicswiki.org, 2010.
  35. [35]
    Edward Collett. Field guide to polarization. SPIE Press, 2005.Google Scholar
  36. [36]
    Katherine Creath. Phase-Measurement Interferometry Techniques. In EmilWolf, editor, Progress in Optics, volume 26, pages 349–393, 1988.Google Scholar
  37. [37]
    Charles Curtis. Linear algebra: an introductory approach. Springer, 1993.Google Scholar
  38. [38]
    René Dändliker and Pierre Jacquot. Holographic Interferometry and Speckle Methods. In E. Wagner, R. Dändliker, and K. Spenner, editors, Optical Sensors, volume 6 of Sensors, pages 589–628. VCH, 1992.Google Scholar
  39. [39]
    Thao Dang. Kontinuierliche Selbstkalibrierung von Stereokameras. PhD thesis, Universität Karlsruhe (TH), 2007.Google Scholar
  40. [40]
    Colin Davies and Mark Nixon. A Hough Transform for Detecting the Location and Orientation of three-Dimensional Surfaces Via Color Encoded Spots. IEEE Transactions on Systems, Man, and Cybernetics Part B, 28(1):90–95, 1998.CrossRefGoogle Scholar
  41. [41]
    Deutsches Institut für Normung, editor. Gestaltabweichungen. DIN 4760, Beuth, 1982.Google Scholar
  42. [42]
    Optik und optische Instrumente – Bestimmung von Streustrahlung, hervorgerufen durch optische Komponenten. DIN EN ISO 13696:2002-12, Beuth, 2002.Google Scholar
  43. [43]
    Deutsches Institut für Normung, editor. Sicherheit von Lasereinrichtungen – Teil 1: Klassifizierung von Anlagen und Anforderungen. DIN EN 60825-1; VDE 0837-1, Beuth, 2008.Google Scholar
  44. [44]
    Rainer Dohlus. Photonik: Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers. Oldenbourg, 2010.Google Scholar
  45. [45]
    Axel Donges and Reinhard Noll. Lasermesstechnik: Grundlagen und Anwendungen. Hüthig, 1993.Google Scholar
  46. [46]
    Rainer Dorsch, Gerd Häusler, and Jürgen Herrmann. Laser triangulation: fundamental uncertainty in distance measurement. Applied Optics, 33(5):1306–1314, 1994.CrossRefGoogle Scholar
  47. [47]
    Augusto Durelli and Vincent Parks. Moire analysis of strain. Prentice Hall, Englewood Cliffs, NJ, 1970.Google Scholar
  48. [48]
    Olivier Faugeras and Quang-Tuan Luong. The Geometry of Multiple Images. MIT Press, 2001.Google Scholar
  49. [49]
    Thomas Finke. Laserscanner in der automatischen Sichtprüfung. PhD thesis, Universität Karlsruhe (TH), 1996.Google Scholar
  50. [50]
    Udo Flohr and Birte Schlund. Erst schießen, dann schärfen. Technology Review, (3):8–9, 2012.Google Scholar
  51. [51]
    David Forsyth and Jean Ponce. Computer Vision – A Modern Approach. Prentice Hall, Upper Saddle River, NJ, 2003.Google Scholar
  52. [52]
    Theobald Fuchs, Randolf Hanke, and Michael Maisl. Röntgenbasierte Methoden für die Zerstörungsfreie Prüfung. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 316–321. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  53. [53]
    Kensaku Fujii, Michael Grossberg, and Shree Nayar. A projector-camera system with real-time photometric adaptation for dynamic environments. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 814–821, 2005.Google Scholar
  54. [54]
    James Fujimoto, Mark Brezinski, Guillermo Tearney, Stephen Boppart, Brett Bouma, Michael Hee, James Southern, and Eric Swanson. Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1(9):970–972, 1995.CrossRefGoogle Scholar
  55. [55]
    Dennis Gabor. A New Microscopic Principle. Nature, 161(4098):777–778, 1948.CrossRefGoogle Scholar
  56. [56]
    Martin-Mathias Gaupp. Die digitale Bildverarbeitung als Hilfsmittel in der Spannungsoptik – Verfahren und Möglichkeiten. PhD thesis, Universität Stuttgart, 1989.Google Scholar
  57. [57]
    Andreas Geiger, Martin Roser, and Raquel Urtasun. Efficient Large-Scale Stereo Matching. In Asian Conference on Computer Vision, 2010.Google Scholar
  58. [58]
    Todor Georgiev and Andrew Lumsdaine. Focused plenoptic camera and rendering. Journal of Electronic Imaging, 19(2):021106–021106, 2010.CrossRefGoogle Scholar
  59. [59]
    Dennis Ghiglia and Mark Pritt. Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley, 1998.Google Scholar
  60. [60]
    Stefan Gliech. Entwicklung und Anwendung eines Messsystems zur Bestimmung des totalen Streulichts von optischen und technisch rauhen Oberflächen und Schichten. PhD thesis, Technische Universität Ilmenau, 2003.Google Scholar
  61. [61]
    Robin Gruna and Jürgen Beyerer. On Scene-Adapted Illumination Techniques for Industrial Inspection. In Proc. IEEE Instrumentation and Measurement Technology Conference, pages 498–503, May 2010.Google Scholar
  62. [62]
    Robin Gruna and Jürgen Beyerer. Acquisition and Evaluation of Illumination Series for Unsupervised Defect Detection. In Proc. IEEE Instrumentation and Measurement Technology Conference, pages 192–197, May 2011.Google Scholar
  63. [63]
    Robin Gruna, Kai-Uwe Vieth, Matthias Michelsburg, and Fernando Puente León. Hyperspectral Imaging – From Laboratory to In-line Food Sorting. In László Baranyai, editor, Second International Workshop on Image Analysis in Agriculture, pages 79–90, 2010.Google Scholar
  64. [64]
    Jens Gühring. 3D-Erfassung und Objektrekonstruktion mittels Streifenprojektion. PhD thesis, Universität Stuttgart, 2002.Google Scholar
  65. [65]
    Gabe Guss, Isaac Bass, Richard Hackel, Christian Mailhiot, and Stavros Demos. High-resolution 3D imaging of surface damage sites in fused silica with optical coherence tomography. In Laser- Induced Damage in Optical Materials, Proc. SPIE, volume 6720, pages 67201F–67201F, 2007.Google Scholar
  66. [66]
    Tobias Haist. Optische Phänomene in Natur und Alltag. http://www.optipina.de, 2010.
  67. [67]
    Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd edition, 2003.Google Scholar
  68. [68]
    Matthias Hartrumpf and Rüdiger Heintz. Device and method for the classification of transparent components in a material flow. Patent WO 2009/049594 A 1, 2009.Google Scholar
  69. [69]
    Matthias Hartrumpf, Kai-Uwe Vieth, Thomas Längle, and Günter Struck. Neues Verfahren zur Sichtprüfung transparenter Materialien. In Sensorgestützte Sortierung, pages 57–58, 2008.Google Scholar
  70. [70]
    Jörg Haus. Optical sensors: basics and applications. Wiley-VCH, 2010.Google Scholar
  71. [71]
    Gerd Häusler, Peter Ettl, M. Schenk, Gunther Bohn, and Ildiko Laszlo. Limits of Optical Range Sensors and How to Exploit Them. In Toshimitsu Asakura, editor, International Trends in Optics and Photonics, pages 328–342. Springer, 1999.Google Scholar
  72. [72]
    Oliver Heavens. Thin film physics. Methuen, 1970.Google Scholar
  73. [73]
    Eugene Hecht. Optics. Addison-Wesley, San Francisco, 4th edition, 2002.Google Scholar
  74. [74]
    Karl Hehl, Albrecht Hertzsch, Knut Kröger, and Horst Truckenbrodt. Topographiemessungen technischer Oberflächen mit einer Streulichtanordnung. Technisches Messen, 70(1):4–9, 2003.CrossRefGoogle Scholar
  75. [75]
    Michael Heizmann. Auswertung von forensischen Riefenspuren mittels automatischer Sichtprüfung. PhD thesis, Universität Karlsruhe (TH), 2004.Google Scholar
  76. [76]
    Michael Heizmann and Ioana Ghe¸ta. Methoden der 3-D-Vermessung von Oberflächen. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 159–168. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  77. [77]
    Heiko Hirschmüller. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328–341, February 2008.CrossRefGoogle Scholar
  78. [78]
    Stefan Hoffmann and Martin Hofmann. Terahertz-Strahlung entgeht nichts. Rubin, (1):42–48, 2005.Google Scholar
  79. [79]
    Heinrich Höfler and Michael Seib. Überblick über die verschiedenen Moiré-Techniken. Vision and Voice Magazine, 4(2):145–151, 1990.Google Scholar
  80. [80]
    Heinrich Höfler and Michael Seib. Optical Surface and Morphology Inspection Techniques. In E. Wagner, R. Dändliker, and K. Spenner, editors, Optical Sensors, volume 6 of Sensors, pages 551–587. VCH, 1992.Google Scholar
  81. [81]
    Berthold Horn and Michael Brooks, editors. Shape from Shading. MIT Press, 1989.Google Scholar
  82. [82]
    D. Hünerhoff, U. Grusemann, and A. Höpe. New robot-based gonioreflectometer for measuring spectral diffuse reflection. Metrologia, 43(2):11–16, 2006.CrossRefGoogle Scholar
  83. [83]
    Y. Hung and Y. Liang. Image-shearing camera for direct measurements of surface strains. Applied Optics, 18(7):1046–1051, 1979.CrossRefGoogle Scholar
  84. [84]
    W. Hunter. Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region. In Edward Palik, editor, Handbook of Optical Constants of Solids, pages 69–88. Academic Press, 1985.Google Scholar
  85. [85]
    International Organization for Standardization, editor. Guide to the expression of uncertainty in measurement. 1995.Google Scholar
  86. [86]
    Minoru Ito and Akira Ishii. A three-level checkerboard pattern (TCP) projection method for curved surface measurement. Pattern Recognition, 28(1):27–40, 1995.CrossRefGoogle Scholar
  87. [87]
    Bernd Jähne. Practical handbook on image processing for scientific and technical applications. CRC Press, 2nd edition, 2004.Google Scholar
  88. [88]
    Ingmar Jahr. Lighting in Machine Vision. In Alexander Hornberg, editor, Handbook of Machine Vision, pages 73–203. Wiley-VCH, 2006.Google Scholar
  89. [89]
    Markus Jehle, Christoph Sommer, and Bernd Jähne. Learning of Optimal Illumination for Material Classification. In Pattern Recognition – 32nd DAGM Symposium, pages 563–572, 2010.Google Scholar
  90. [90]
    Christian Jördens and Martin Koch. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Optical Engineering, 47(3):037003–037003, 2008.CrossRefGoogle Scholar
  91. [91]
    Werner Jüptner. Holografische Interferometrie. In Optische Messung technischer Oberflächen in der Praxis, pages 287–296. VDI-Verlag, 2007.Google Scholar
  92. [92]
    Avinash Kak and Malcolm Slaney. Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics, 2001.Google Scholar
  93. [93]
    Willi Kalender. Computed tomography: fundamentals, system technology, image quality, applications. Publicis, 3rd edition, 2011.Google Scholar
  94. [94]
    Michael Kalms, Wolfgang Osten, andWerner Jüptner. Scherografie – die Umsetzung des Prinzips in ein mobiles Prüfsystem. Technisches Messen, 69(5):217–226, 2002.Google Scholar
  95. [95]
    Sören Kammel. Deflektometrische Untersuchung spiegelnd reflektierender Freiformflächen. PhD thesis, Universität Karlsruhe (TH), 2005.Google Scholar
  96. [96]
    K. Kawase, T. Shibuya, K. Suizu, and S. Hayashi. THz wave generation and imaging for industrial applications. In Mehdi Anwar, Nibir Dhar, and Thomas Crowe, editors, Proc. SPIE Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense, volume 7671, 2010.Google Scholar
  97. [97]
    Alexander Koch, Michael Ruprecht, Olaf Toedter, Gerd Häusler, Stefan Blossey, Harald Schoenfeld, and Veit Windbichler. Optische Messtechnik an technischen Oberflächen. expert Verlag, 1998.Google Scholar
  98. [98]
    Antje Kochan. Untersuchungen zur zerstörungsfreien Prüfung von CFK-Bauteilen für die fertigungsbegleitende Qualitätssicherung im Automobilbau. PhD thesis, Technische Universität Dresden, 2011.Google Scholar
  99. [99]
    Friedel Koerfer and Robert Schmitt. In-Prozess Mikrostrukturprüfung. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 182–187. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  100. [100]
    Matthias Krauß, Guido Mahler, David Pfengler, and Birgit Vollheim. Solarzellenprüfung mittels lichtmodulierter Lock-In-Thermographie. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 411–416. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  101. [101]
    Thomas Kreis, Jürgen Geldmacher, and Werner Jüptner. Phasenschiebe-Verfahren in der interferometrischen Meßtechnik: Ein Vergleich. In Wilhelm Waidelich, editor, Kongress Laser in der Technik, pages 119–126, 1993.Google Scholar
  102. [102]
    Robert Lalla. Verfahren zur Auswertung von Moiréaufnahmen technischer Oberflächen. PhD thesis, Universität Karlsruhe (TH), 1993.Google Scholar
  103. [103]
    Leonardo da Vinci. The notebooks of Leonardo da Vinci. Edited by Jean Paul Richter, Dover, 1970.Google Scholar
  104. [104]
    Marc Levoy and Pat Hanrahan. Light field rendering. In Proc. ACM SIGGRAPH, pages 31–42, 1996.Google Scholar
  105. [105]
    Wansong Li, Thorsten Bothe, Wolfgang Osten, and Michael Kalms. Object adapted pattern projection—Part I: generation of inverse patterns. Optics and Lasers in Engineering, 41:31–50, 2004.CrossRefGoogle Scholar
  106. [106]
    David Lide, editor. Handbook of chemistry and physics. CRC Press, 89th edition, 2008.Google Scholar
  107. [107]
    Michael Liepert. 3-D-Oberflächeninspektionssystem mit fotometrischem Stereo. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 169–172. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  108. [108]
    Miaomiao Liu, Richard Hartley, and Mathieu Salzmann. Mirror surface reconstruction from a single image. In Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 129–136, 2013.Google Scholar
  109. [109]
    Ulrich Lübbert and Frank Muth. Beleuchtung und Optik für die genaue Vermessung von Werkstücken mit bildgebenden Sensoren. IITB-Mitteilungen, pages 9–14, 1993.Google Scholar
  110. [110]
    Thomas Luhmann, Stuart Robson, Stephen Kyle, and Jan Boehm. Close-range photogrammetry and 3D imaging. De Gruyter, 2nd edition, 2014.Google Scholar
  111. [111]
    Hans Dieter Lüke. Korrelationssignale: Korrelationsfolgen und Korrelationsarrays in Nachrichten- und Informationstechnik, Messtechnik und Optik. Springer, 1992.Google Scholar
  112. [112]
    Reinhard Malz. Codierte Lichtstrukturen für 3-D-Meßtechnik und Inspektion. PhD thesis, Universität Stuttgart, 1992.Google Scholar
  113. [113]
    Matthias Michelsburg, Robin Gruna, Kai-Uwe Vieth, and Fernando Puente León. Spektrale Bandselektion für das Filterdesign optischer Inspektionssysteme. Technisches Messen, 78(9):384–390, 2011.CrossRefGoogle Scholar
  114. [114]
    Marvin Minsky. Microscopy apparatus. Patent US 3013467, 1957.Google Scholar
  115. [115]
    Robert Müller. Handbuch der Modellstatik. Springer, 1971.Google Scholar
  116. [116]
    Udo Netzelmann. Impuls- und Lock-In-Thermographie. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 373–377. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  117. [117]
    Ulrich Neuschaefer-Rube. Optische Oberflächenmesstechnik für Topografie und Material. Habilitationsschrift, Universität Gesamthochschule Kassel, 2002.Google Scholar
  118. [118]
    Don Newsome and Peter Modreski. The colors and spectral distributions of fluorescentminerals. Journal of the Fluorescent Mineral Society, 10:7–57, 1981.Google Scholar
  119. [119]
    Ren Ng. Fourier slice photography. In Proc. ACM SIGGRAPH, pages 735–744, 2005.Google Scholar
  120. [120]
    Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan. Light Field Photography with a Hand-held Plenoptic Camera. Technical Report CTSR 2005-02, Stanford University, 2005.Google Scholar
  121. [121]
    Reinhard Noll. Lasertriangulation. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 56–60. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  122. [122]
    Gunther Notni. Verfahren zur optischen 3-D-Messtechnik. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 214–231. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  123. [123]
    Dirk Nüßler, Christian Krebs, Stefan Schneider, and Eva Schlauch. Material Analysis for the Millimeter Wave Frequencies. In Proc. International Radar Symposium (IRS), 2007.Google Scholar
  124. [124]
    Wolfgang Osten. Digitale Verarbeitung und Auswertung von Interferenzbildern. Akademie-Verlag, 1991.Google Scholar
  125. [125]
    Wolfgang Osten. Digital Image Processing for Optical Metrology. In William Sharpe, editor, Springer handbook of experimental solid mechanics, pages 481–564. Springer, 2008.Google Scholar
  126. [126]
    Creidhe O’Sullivan and J. Anthony Murphy. Field guide to terahertz sources, detectors, and optics. SPIE Press, 2012.Google Scholar
  127. [127]
    Peter Ott and Gao Jun. Optische Grenzen von Triangulationsmethoden auf technischen Oberflächen. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 281–287. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  128. [128]
    Alexey Pak. Stability of absolute depth reconstruction from deflectometric measurement data. In Proceedings of SPIE Optical Engineering and Applications, pages 92030E–92030E–7, 2014.Google Scholar
  129. [129]
    Edward Palik, editor. Handbook of Optical Constants of Solids. Academic Press, 1998.Google Scholar
  130. [130]
    Frank L. Pedrotti, Leno S. Pedrotti, and Leno M. Pedrotti. Introduction to optics. Pearson Prentice Hall, 3rd edition, 2007.Google Scholar
  131. [131]
    Tilo Pfeifer and Robert Schmitt. Fertigungsmesstechnik. Oldenbourg, 3rd edition, 2010.Google Scholar
  132. [132]
    Daniel Post, Bongtae Han, and Peter Ifju. Moiré Methods for Engineering and Science – Moiré Interferometry and Shadow Moiré. In Pramod Rastogi, editor, Photomechanics, pages 151–196. Springer, 2000.Google Scholar
  133. [133]
    Fernando Puente León and Jürgen Beyerer. Datenfusion zur Gewinnung hochwertiger Bilder in der automatischen Sichtprüfung. Automatisierungstechnik, 45(10):480–489, 1997.Google Scholar
  134. [134]
    Ehsan Rahani, Tribikram Kundu, ZiranWu, and Hao Xin. Mechanical Damage Detection in Polymer Tiles by THz Radiation. IEEE Sensors Journal, 11(8):1720–1725, 2011.CrossRefGoogle Scholar
  135. [135]
    Harald Rein and Pirmin Gerspacher. Interferometrische Meßtechnik und Streifenanalyse. In Bernd Breuckmann, editor, Bildverarbeitung und optische Messtechnik in der industriellen Praxis, pages 66–100. Franzis, 1993.Google Scholar
  136. [136]
    Franz Reischer and Bernhard Zimmermann. Laser Scanning Mikroskopie – Schnell und berührungslos Oberflächen dreidimensional analysieren. In Optische Messung technischer Oberflächen in der Praxis, pages 131–139. VDI-Verlag, 2007.Google Scholar
  137. [137]
    Justin Rennilson. Retroreflection. In Casimer DeCusatis, editor, Handbook of applied photometry, pages 289–325. Springer, 1998.Google Scholar
  138. [138]
    Stefan Riehemann, Boris Pradarutti, and Gunther Notni. Bildgebende Terahertz-Systeme zur Qualitätssicherung. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 420–425. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  139. [139]
    Joaquim Salvi, Jordi Pagès, and Joan Batlle. Pattern codification strategies in structured light systems. Pattern Recognition, 37:827–849, 2004.CrossRefzbMATHGoogle Scholar
  140. [140]
    Indu Saxena. Ellipsometry. In Pramod Rastogi, editor, Optical Measurement Techniques and Applications, pages 406–409. Artech House, 1997.Google Scholar
  141. [141]
    Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision, 47(1–3):7–42, 2002.zbMATHGoogle Scholar
  142. [142]
    Torsten Scheuermann. Berührungslose Gestaltvermessung von Mikrostrukturen durch Fokussuche. PhD thesis, Universität Stuttgart, 1997.Google Scholar
  143. [143]
    Anton Schick. Konfokale 3-D-Bildaufnahme zur Oberflächenanalyse. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 188–192. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  144. [144]
    Joseph Schmitt. Optical Coherence Tomography (OCT): A Review. IEEE Journal of Selected Topics in Quantum Electronics, 5(4):1205–1215, 1999.CrossRefGoogle Scholar
  145. [145]
    Gottfried Schröder and Hanskarl Treiber. Technische Optik. Vogel, Würzburg, 9th edition, 2002.Google Scholar
  146. [146]
    Dietrich Schupp. Optische Tensortomographie zur Untersuchung räumlicher Spannungsverteilungen. PhD thesis, Universität Karlsruhe (TH), 2000.Google Scholar
  147. [147]
    Alexander Schwarz. Multitomographische Temperaturmessung in Flammen mit einem Schlierenmeßaufbau. PhD thesis, Universität Karlsruhe (TH), 1995.Google Scholar
  148. [148]
    Steven Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 519–528, 2006.Google Scholar
  149. [149]
    C. Sheppard. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Optics communications, 119(5):693–695, 1995.CrossRefGoogle Scholar
  150. [150]
    Pavel Shumyatsky and Robert Alfano. Terahertz sources. Journal of Biomedical Optics, 16(3), 2011.Google Scholar
  151. [151]
    Sick AG. LMS Fast Laser Measurement Systems. Product Information, 2007.Google Scholar
  152. [152]
    Klaus Spinnler. Inspektion von Bohrungen und Rohren mit Panorama-Endoskopie. In Norbert Bauer, editor, Handbuch zur Industriellen Bildverarbeitung, pages 124–131. Fraunhofer IRB Verlag, 1st edition, 2007.Google Scholar
  153. [153]
    Ernst Stelzer and Steffen Lindek. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Optics Communications, 111(5):536–547, 1994.Google Scholar
  154. [154]
    David Stifter. Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Applied Physics B, 88(3):337–357, 2007.CrossRefGoogle Scholar
  155. [155]
    John Stover. Optical scattering: measurement and analysis. SPIE Optical Engineering Press, 2nd edition, 1995.Google Scholar
  156. [156]
    Yves Surrel. Design of algorithms for phase measurements by the use of phase stepping. Applied Optics, 35(1):51–60, 1996.CrossRefGoogle Scholar
  157. [157]
    Yves Surrel. Fringe Analysis. In Pramod Rastogi, editor, Photomechanics, pages 55–102. Springer, 2000.Google Scholar
  158. [158]
    Ernst Sutter. Schutz vor optischer Strahlung: Laserstrahlung, inkohärente Strahlung, Sonnenstrahlung; Normenreihe DIN EN 60825 (VDE 0837), volume 104 of VDE-Schriftenreihe Normen verständlich. VDE-Verlag, 3rd edition, 2008.Google Scholar
  159. [159]
    Miro Taphanel. Device for Optically Determining the Surface Geometry of a Three-dimensional Sample. Patent WO 2013/064395 A 1, 2013.Google Scholar
  160. [160]
    Miro Taphanel and Jürgen Beyerer. Fast 3D in-line sensor for specular and diffuse surfaces combining the chromatic confocal and triangulation principle. In Proc. IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2012), pages 1072–1077, 2012.Google Scholar
  161. [161]
    Miro Taphanel, Bastiaan Hovestreydt, and Jürgen Beyerer. Speed-up Chromatic Sensors by Optimized Optical Filters. In Proc. SPIE Optical Measurement Systems for Industrial Inspection VIII, volume 8788, pages 87880S–87880S–10, 2013.CrossRefGoogle Scholar
  162. [162]
    Michael Theuer, Garik Torosyan, Frank Ellrich, Joachim Jonuscheit, and René Beigang. Terahertz-Bildgebung in industriellen Anwendungen. Technisches Messen, 75(1):64–70, 2008.CrossRefGoogle Scholar
  163. [163]
    Jürgen Thiel and Bernhard Brand. Laserscanner. In Tilo Pfeifer, editor, Optoelektronische Verfahren zur Messung geometrischer Größen in der Fertigung, pages 85–95. expert Verlag, 1993.Google Scholar
  164. [164]
    Hans Tiziani, Michael Wegner, and Daniela Steudle. Confocal principle for macro- and microscopic surface and defect analysis. Optical Engineering, 39(1):32–39, 2000.CrossRefGoogle Scholar
  165. [165]
    Harland Tompkins and Eugene Irene, editors. Handbook of ellipsometry. Andrew, 2005.Google Scholar
  166. [166]
    Harland Tompkins and William McGahan. Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, 1999.Google Scholar
  167. [167]
    Ansgar Trächtler. Tomographische Methoden in der Meßtechnik, volume 897 of Fortschritt-Berichte VDI, 8. VDI-Verlag, 2001.Google Scholar
  168. [168]
    Johannes Trautner, Karl Walcher, Gerd Leuchs, Bernd Bodermann, and Harald Telle. Mehrwellenlängen-Interferometrie zur absoluten Abstandsmessung und 3D-Bildgebung. Technisches Messen, 67(10):406–409, 2000.Google Scholar
  169. [169]
    Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Prentice Hall, 1998.Google Scholar
  170. [170]
    Jürgen Valentin and Mark Weber. Konfokale Mikroskopie zur Rauheits- und Schichtdickenmessung. In Optische Messung technischer Oberflächen in der Praxis, pages 113–122. VDI-Verlag, 2007.Google Scholar
  171. [171]
    Matthias Vaupel. Abbildende Ellipsometrie und ihre Anwendungen. In Optische Messung technischer Oberflächen in der Praxis, pages 141–150. VDI-Verlag, 2007.Google Scholar
  172. [172]
    D. Wang, Y. Chen, Y. Wang, and J. Liu. Comparison of line-scanned and point-scanned dual-axis confocal microscope performance. Optics letters, 38(24):5280–5283, 2013.CrossRefGoogle Scholar
  173. [173]
    Stefan Werling. Deflektometrie zur automatischen Sichtprüfung und Rekonstruktion spiegelnder Oberflächen. PhD thesis, Karlsruhe Institute of Technology, 2011.Google Scholar
  174. [174]
    Gordon Wetzstein and Oliver Bimber. Radiometric compensation through inverse light transport. In Proc. 15th Pacific Conference on Computer Graphics and Applications, pages 391–399, 2007.Google Scholar
  175. [175]
    Rebecca Willett, Roummel Marcia, and Jonathan Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Optical Engineering, 50(7):072601–072601, 2011.CrossRefGoogle Scholar
  176. [176]
    Horst Winterberg. Holografie und Speckle-Meßtechnik. In Bernd Breuckmann, editor, Bildverarbeitung und optische Messtechnik in der industriellen Praxis, pages 101–123. Franzis, 1993.Google Scholar
  177. [177]
    Helmut Wolf. Spannungsoptik. Springer, 2nd edition, 1976.Google Scholar
  178. [178]
    Günter Wyszecki and Walter Stiles. Color Science. Wily, 2nd edition, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jürgen Beyerer
    • 1
    Email author
  • Fernando Puente León
    • 2
  • Christian Frese
    • 3
  1. 1.Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung and The Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer-Institut für Optronik, Systemtechnik und BildauswertungKarlsruheGermany

Personalised recommendations