Advertisement

Machine Vision pp 163-202 | Cite as

Color

  • Jürgen BeyererEmail author
  • Fernando Puente León
  • Christian Frese
Chapter

Abstract

In photometry, all quantities are with reference to the perception of brightness by the human eye. The sensitivity of the human eye can be described by a function V (λ) of the wavelength. This so-called luminosity function varies for different ambient conditions, such as photopic vision or scotopic vision, for example (Fig. 5.1), which refer to human perception at daylight or in darkness. The luminosity function of the light-adapted eye is used for defining the photometric base system. It is scaled to have a maximum value of 1. The luminosity function can be empirically measured using a psychophysical method similar to the method described in Sec. 5.2.3. However, the perception of brightness of the human eye is not a metric quantity: differences and ratios cannot be quantified by human perception. The corresponding conclusions for photometric quantities do not represent the human perception of brightness [36].

Keywords

Color Space Color Perception Luminosity Function Color Stimulus Primary Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Bruce Batchelor, editor. Machine Vision Handbook. Springer, 2012.Google Scholar
  2. [2]
    Bruce Batchelor and Paul Whelan. Intelligent vision systems for industry. Springer, 1997.Google Scholar
  3. [3]
    Sarah Bee and Mark Honeywood. Colour Sorting in the Food Industry. In Mark Graves and Bruce Batchelor, editors, Machine vision for the inspection of natural products. Springer, 2003.Google Scholar
  4. [4]
    Ludwig Bergmann, Clemens Schaefer, Heinz Niedrig, and Hans-Joachim Eichler, editors. Lehrbuch der Experimentalphysik, volume 3: Optik: Wellen- und Teilchenoptik. De Gruyter, 10th edition, 2004.Google Scholar
  5. [5]
    Roy Berns, Fred Billmeyer, and Max Saltzman. Billmeyer and Saltzman’s principles of color technology. Wiley, 3rd edition, 2000.Google Scholar
  6. [6]
    David Berson, Felice Dunn, and Motoharu Takao. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.CrossRefGoogle Scholar
  7. [7]
    Josef Bigun. Vision with direction. Springer, 2006.Google Scholar
  8. [8]
    Wilhelm Burger and Mark Burge. Principles of digital image processing, volume 2: Core algorithms. Springer, 2009.Google Scholar
  9. [9]
    Wilhelm Burger and Mark Burge. Principles of digital image processing, volume 1: Fundamental techniques. Springer, 2009.Google Scholar
  10. [10]
    CIE – International Commission on Illumination. http://www.cie.co.at/, 2011.
  11. [11]
    Commission Internationale de l´Éclairage, editor. CIE Colorimetry. Joint ISO/CIE Standard ISO 11664 / CIE S 014–1, 2007.Google Scholar
  12. [12]
    Michael D’Zmura. Psychology of Color Perception. In Lynn Nadel, editor, Encyclopedia of Cognitive Science, volume 1, pages 560–568. Nature, 2003.Google Scholar
  13. [13]
    Marc Ebner. Color constancy. Wiley, 2007.Google Scholar
  14. [14]
    Hugh Fairman, Michael Brill, and Henry Hemmendinger. How the CIE 1931 Color-Matching Functions Were Derived from Wright-Guild Data. Color Research and Application, 22(1):11–23, 1997.CrossRefGoogle Scholar
  15. [15]
    David Falk, Dieter Brill, and David Stork. Ein Blick ins Licht: Einblicke in die Natur des Lichts und des Sehens, in Farbe und Fotografie. Birkhäuser, 1990.Google Scholar
  16. [16]
    Ioana Ghe¸ta, Michael Heizmann, and Jürgen Beyerer. 3D fusion of stereo and spectral series acquired with camera arrays. In Yufeng Zheng, editor, Image Fusion and Its Applications, pages 73–92. InTech, 2011.Google Scholar
  17. [17]
    Eugen Bruce Goldstein. Sensation and perception. Wadsworth Cengage, 9th edition, 2014.Google Scholar
  18. [18]
    Rafael Gonzalez and RichardWoods. Digital image processing. Pearson Prentice Hall, 3rd edition, 2008.Google Scholar
  19. [19]
    Hermann Graßmann. Zur Theorie der Farbenmischung. Annalen der Physik, 165(5):69–84, 1853.CrossRefGoogle Scholar
  20. [20]
    Tobias Haist. Optische Phänomene in Natur und Alltag. http://www.optipina.de, 2010.
  21. [21]
    Oliver Heavens. Thin film physics. Methuen, 1970.Google Scholar
  22. [22]
    International Color Consortium, editor. Specification ICC.1:2010 (Profile version 4.3.0.0) Image technology colour management – Architecture, profile format, and data structure. ISO 15076-1, 2010.Google Scholar
  23. [23]
    International Telecommunication Union, editor. Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. Recommendation ITU-R BT.601-7, 2011.Google Scholar
  24. [24]
    Bernd Jähne. Practical handbook on image processing for scientific and technical applications. CRC Press, 2nd edition, 2004.Google Scholar
  25. [25]
    Ingmar Jahr. Lighting in Machine Vision. In Alexander Hornberg, editor, Handbook of Machine Vision, pages 73–203. Wiley-VCH, 2006.Google Scholar
  26. [26]
    Ramesh Jain, Rangachar Kasturi, and Brian Schunck. Machine vision. McGraw-Hill, 1995.Google Scholar
  27. [27]
    Erik Klaas. Farbbildverarbeitung. In Bernd Breuckmann, editor, Bildverarbeitung und optische Messtechnik in der industriellen Praxis, pages 54–65. Franzis, 1993.Google Scholar
  28. [28]
    Siegfried Kokoschka. Script zur Vorlesung Grundlagen der Lichttechnik. Lichttechnisches Institut der Universität Karlsruhe (TH), 2003.Google Scholar
  29. [29]
    Helga Kolb, Ralph Nelson, Eduardo Fernandez, and Bryan Jones. Webvision – The Organization of the Retina and Visual System. http://webvision.med.utah.edu/book/, 2012.
  30. [30]
    Hsien-Che Lee. Introduction to color imaging science. Cambridge University Press, 2005.Google Scholar
  31. [31]
    M. Luo, G. Cui, and B. Rigg. The Development of the CIE 2000 Colour-Difference Formula: CIEDE2000. Color Research and Application, 26(5):340–350, October 2001.CrossRefGoogle Scholar
  32. [32]
    The Munsell book of color. Munsell Color, 2009.Google Scholar
  33. [33]
    Burkhard Neumann. Bildverarbeitung für Einsteiger. Springer, 2005.Google Scholar
  34. [34]
    Gustav Østerberg. Topography of the layer of rods and cones in the human retina. Acta ophthalmologica, Supplementum, (6), 1935.Google Scholar
  35. [35]
    Charles Poynton. Digital video and HDTV: algorithms and interfaces. Morgan Kaufmann, 2003. 36.Google Scholar
  36. [36]
    Otto Reeb. Grundlagen der Photometrie. Braun, Karlsruhe, 1962.Google Scholar
  37. [37]
    Georgios Sakas, Stefan Thiemert, and Christoph Jung. Vorlesung Bildverarbeitung. http://www.gris.informatik.tu-darmstadt.de/teaching/courses/ss11/bv/index.de.htm, 2011.
  38. [38]
    Frank Schaeffel. Processing of Information in the Human Visual System. In Alexander Hornberg, editor, Handbook of Machine Vision, pages 1–33. Wiley-VCH, 2006.Google Scholar
  39. [39]
    Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta. A Standard Default Color Space for the Internet – sRGB. http://www.w3.org/Graphics/Color/sRGB, 1996.
  40. [40]
    Kotaro Takahama and Yoshinobu Nayatani. New Method for Generating Metameric Stimuli of Object Colors. Journal of the Optical Society of America, 62(12):1516–1520, 1972.CrossRefGoogle Scholar
  41. [41]
    Hans Völz. Industrial color testing. VCH, 1995.Google Scholar
  42. [42]
    EdwardWilson. The social conquest of earth. Liveright, 2013.Google Scholar
  43. [43]
    Günter Wyszecki and Walter Stiles. Color Science. Wiley, 2nd edition, 2000.Google Scholar
  44. [44]
    Silvano Di Zenzo. A Note on the Gradient of a Multi-Image. Computer Vision, Graphics, and Image Processing, 33:116–125, 1986.zbMATHCrossRefGoogle Scholar
  45. [45]
    Wolfgang Zinth and Ursula Zinth. Optik: Lichtstrahlen – Wellen – Photonen. Oldenbourg, München, 4th edition, 2013.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jürgen Beyerer
    • 1
    Email author
  • Fernando Puente León
    • 2
  • Christian Frese
    • 3
  1. 1.Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung and The Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer-Institut für Optronik, Systemtechnik und BildauswertungKarlsruheGermany

Personalised recommendations