Advertisement

Machine Vision pp 721-750 | Cite as

Image Pyramids, the Wavelet Transfm and Multiresolution Analysis

  • Jürgen BeyererEmail author
  • Fernando Puente León
  • Christian Frese
Chapter

Abstract

Multiresolution analysis is a mathematical concept describing signal analysis on different resolution levels. In contrast to the analysis of the fine details contained in the image, which requires the maximum possible resolution, coarse structures can be analyzed with little effort using a reduced resolution. Two methods for multiresolution analysis, which are covered in this chapter, are image pyramids and the wavelet transform.

Keywords

Wavelet Transform Interest Point Scaling Function Wavelet Function Mother Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Werner Bäni. Wavelets: Eine Einführung für Ingenieure. Oldenbourg, 2nd edition, 2005.Google Scholar
  2. [2]
    Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, 9th European Conference on Computer Vision, pages 404–417. Springer, 2006.Google Scholar
  3. [3]
    Josef Bigun. Vision with direction. Springer, 2006.Google Scholar
  4. [4]
    Kristian Bredies and Dirk Lorenz. Mathematische Bildverarbeitung: Einführung in Grundlagen und moderne Theorie. Vieweg+Teubner, 2011.Google Scholar
  5. [5]
    Joel G. Broida and S. Gill Williamson. A comprehensive introduction to linear algebra. Addison-Wesley, 1989.Google Scholar
  6. [6]
    Ilja Bronshtein, Konstantin Semendyayev, Gerhard Musiol, and Heiner Mühlig. Handbook of Mathematics. Springer, 6th edition, 2015.Google Scholar
  7. [7]
    Peter Burt and Edward Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532–540, April 1983.CrossRefGoogle Scholar
  8. [8]
    Peter Burt, Tsai-Hong Hong, and Azriel Rosenfeld. Segmentation and Estimation of Image Region Properties through Cooperative Hierarchial Computation. IEEE Transactions on Systems, Man and Cybernetics, 11(12):802–809, 1981.CrossRefGoogle Scholar
  9. [9]
    Franklin Crow. Summed-Area Tables for Texture Mapping. Computer Graphics, 18(3):207–212, 1984.CrossRefGoogle Scholar
  10. [10]
    Ingrid Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992.Google Scholar
  11. [11]
    Rafael Gonzalez and RichardWoods. Digital image processing. Pearson Prentice Hall, 3rd edition, 2008.Google Scholar
  12. [12]
    Barbara Burke Hubbard. The world according to wavelets: the story of a mathematical technique in the making. Peters, 2nd edition, 1999.Google Scholar
  13. [13]
    Bernd Jähne. Digital image processing. Springer, 6th edition, 2005.Google Scholar
  14. [14]
    Kai Jüngling. Ein generisches System zur automatischen Detektion, Verfolgung und Wiedererkennung von Personen in Videodaten. PhD thesis, Karlsruhe Institute of Technology, 2011.Google Scholar
  15. [15]
    Tony Lindeberg. Scale space theory in computer vision. Kluwer, 1994.Google Scholar
  16. [16]
    David Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2):91–110, 2004.CrossRefGoogle Scholar
  17. [17]
    Stéphane Mallat. A wavelet tour of signal processing. Academic Press, 2nd edition, 1999.Google Scholar
  18. [18]
    K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A Comparison of Affine Region Detectors. International Journal of Computer Vision, 65:43–72, 2005.CrossRefGoogle Scholar
  19. [19]
    Krystian Mikolajczyk and Cordelia Schmid. Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision, 60(1):63–86, 2004.CrossRefGoogle Scholar
  20. [20]
    Andreas Purde. Speckle-Interferometrie zur Formvermessung unstetiger Oberflächen. PhD thesis, Technische Universität München, 2006.Google Scholar
  21. [21]
    Desanka Radunovi´c. Wavelets from math to practice. Springer, 2009.Google Scholar
  22. [22]
    Michael Schweitzer and Hans-Joachim Wuensche. Efficient keypoint matching for robot vision using GPUs. In IEEE Computer Vision Workshops, pages 808–815, September 2009.Google Scholar
  23. [23]
    Tilo Strutz. Bilddatenkompression: Grundlagen, Codierung, Wavelets, JPEG, MPEG, H.264. Vieweg+Teubner, 4th edition, 2009.Google Scholar
  24. [24]
    John K. Truss. Foundations of mathematical analysis. Clarendon Press, Oxford, 1997.Google Scholar
  25. [25]
    Paul Viola and Michael Jones. Rapid Object Detection using Boosted Cascade of Simple Features. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 511–518, 2001.Google Scholar
  26. [26]
    Wolfgang Walter. Analysis 1. Springer, 5th edition, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jürgen Beyerer
    • 1
    Email author
  • Fernando Puente León
    • 2
  • Christian Frese
    • 3
  1. 1.Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung and The Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer-Institut für Optronik, Systemtechnik und BildauswertungKarlsruheGermany

Personalised recommendations