Machine Vision pp 553-605 | Cite as


  • Jürgen BeyererEmail author
  • Fernando Puente León
  • Christian Frese


Segmentation tries to decompose an image g(x) into separate, meaningful areas. For example, the test object is isolated from the background, or the borders between different objects are detected. An automated analysis of a segmented image is often easier than that of an unprocessed image. The result of the segmentation could be used to determine the position and orientation of the segmented objects in a subsequent processing step.


Edge Detection Active Contour Gradient Vector Structure Tensor Seed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ludwig Abele. Statistische und strukturelle Texturanalyse mit Anwendungen in der Bildsegmentierung. PhD thesis, Technische Universität München, 1982.Google Scholar
  2. [2]
    Howard Anton. Elementary linear algebra. Wiley, 10th edition, 2010.Google Scholar
  3. [3]
    Stephan Bischoff and Leif Kobbelt. Parameterization-free active contour models with topology control. The Visual Computer, 20(4):217–228, 2004.CrossRefGoogle Scholar
  4. [4]
    Christopher Bishop. Pattern recognition and machine learning. Springer, 2006.Google Scholar
  5. [5]
    Laure Blanc-Féraud, Pierre Charbonnier, Gilles Aubert, and Michel Barlaud. Nonlinear image processing: modeling and fast algorithm for regularization with edge detection. In Proc. IEEE International Conference on Image Processing, volume 1, pages 474–477, 1995.Google Scholar
  6. [6]
    Yuri Boykov and Gareth Funka-Lea. Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision, 70(2):109–131, 2006.CrossRefGoogle Scholar
  7. [7]
    Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.CrossRefGoogle Scholar
  8. [8]
    Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.CrossRefGoogle Scholar
  9. [9]
    Kristian Bredies and Dirk Lorenz. Mathematische Bildverarbeitung: Einführung in Grundlagen und moderne Theorie. Vieweg + Teubner, 2011.Google Scholar
  10. [10]
    John Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.Google Scholar
  11. [11]
    Constantin Carathéodory. Calculus of Variations and Partial Differential Equations of the First Order. Chelsea, 2nd edition, 1982.Google Scholar
  12. [12]
    Tony Chan and Jianhong Shen. Image processing and analysis: variational, PDE, wavelet, and stochastic methods. Society for Industrial and Applied Mathematics, 2005.Google Scholar
  13. [13]
    Tony Chan and Luminita Vese. Active Contours Without Edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001.Google Scholar
  14. [14]
    Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. IEEE International Conference on Image Processing, volume 2, pages 168–172, 1994.Google Scholar
  15. [15]
    William Cook, William Cunningham, William Pulleyblank, and Alexander Schrijver. Combinatorial Optimization. Wiley, 1998.Google Scholar
  16. [16]
    Guy David. Singular sets of minimizers for the Mumford-Shah functional. Birkhäuser, 2005.Google Scholar
  17. [17]
    Arthur Dempster, Nan Laird, and Donald Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1):1–38, 1977.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Richard Duda, Peter Hart, and David Stork. Pattern classification. Wiley, 2nd edition, 2001.Google Scholar
  19. [19]
    Noha El-Zehiry, Prasanna Sahoo, and Adel Elmaghraby. Combinatorial Optimization of the piecewise constant Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation. Image and Vision Computing, 29(6):365–381, 2011.CrossRefGoogle Scholar
  20. [20]
    Lester R. Ford, Jr. and Delbert Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8(3):399–404, 1956.Google Scholar
  21. [21]
    J. Michael Fried. Multichannel image segmentation using adaptive finite elements. Computing and Visualization in Science, 12(3):125–135, 2009.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Andrew Goldberg and Robert Tarjan. A new approach to the maximum-flow problem. Journal of the ACM, 35(4):921–940, 1988.CrossRefzbMATHGoogle Scholar
  23. [23]
    Rafael Gonzalez and RichardWoods. Digital image processing. Pearson Prentice Hall, 3rd edition, 2008.Google Scholar
  24. [24]
    Robin Gruna and Jürgen Beyerer. Optical feature extraction with illumination-encoded linear functions. In Philip Bingham and Edmund Lam, editors, Proc. SPIE Image Processing: Machine Vision Applications V, volume 8300, 2012.Google Scholar
  25. [25]
    Robert Haralick and Linda Shapiro. Computer and robot vision. Addison-Wesley, 1992.Google Scholar
  26. [26]
    Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: active contour models. International Journal of Computer Vision, 1(4):321–331, 1988.CrossRefGoogle Scholar
  27. [27]
    Vladimir Kolmogorov and Ramin Zabih. What Energy Functions Can Be Minimized via Graph Cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004.CrossRefGoogle Scholar
  28. [28]
    Hsien-Che Lee. Introduction to color imaging science. Cambridge University Press, 2005.Google Scholar
  29. [29]
    Bing Li and Scott Acton. Active contour external force using vector field convolution for image segmentation. IEEE Transactions on Image Processing, 16(8):2096–2106, 2007.MathSciNetCrossRefGoogle Scholar
  30. [30]
    David Marr and Ellen Hildreth. Theory of edge detection. Proc. Royal Society London, Series B – Biological Sciences, 207:187–217, 1980.CrossRefGoogle Scholar
  31. [31]
    Fernand Meyer. Topographic distance and watershed lines. Signal Processing, 38:113–125, 1994.CrossRefzbMATHGoogle Scholar
  32. [32]
    David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5):577–685, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Burkhard Neumann. Bildverarbeitung für Einsteiger. Springer, 2005.Google Scholar
  34. [34]
    Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces. Springer, 2003.Google Scholar
  35. [35]
    Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.CrossRefGoogle Scholar
  36. [36]
    Theodosios Pavlidis. Structural pattern recognition. Springer, 1977.Google Scholar
  37. [37]
    Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.CrossRefGoogle Scholar
  38. [38]
    Andreas Purde. Speckle-Interferometrie zur Formvermessung unstetiger Oberflächen. PhD thesis, Technische Universität München, 2006.Google Scholar
  39. [39]
    Pierre Soille. Morphological image analysis: principles and applications. Springer, 1999.Google Scholar
  40. [40]
    Carlo Tomasi. Estimating Gaussian Mixture Densities with EM – A Tutorial. Handout for Course Introduction to Computer Vision, Duke University,, 2004.
  41. [41]
    Luminita Vese and Tony Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision, 50(3):271–293, 2002.CrossRefzbMATHGoogle Scholar
  42. [42]
    Friedrich Wahl. Digitale Bildsignalverarbeitung. Springer, 1989.Google Scholar
  43. [43]
    Joachim Weickert. A review of nonlinear diffusion filtering. In Bart ter Haar Romeny, Luc Florack, Jan Koenderink, and Max Viergever, editors, Scale-Space Theory in Computer Vision, volume 1252 of Lecture Notes in Computer Science, pages 1–28. Springer, 1997.Google Scholar
  44. [44]
    Chenyang Xu and Jerry Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3):359–369, 1998.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jürgen Beyerer
    • 1
    Email author
  • Fernando Puente León
    • 2
  • Christian Frese
    • 3
  1. 1.Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung and The Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer-Institut für Optronik, Systemtechnik und BildauswertungKarlsruheGermany

Personalised recommendations