Machine Vision pp 521-551 | Cite as

Image Restoration

  • Jürgen BeyererEmail author
  • Fernando Puente León
  • Christian Frese


The image enhancement methods covered in Chap. 9 mainly considered subjective or qualitative criteria. In particular, the visual interpretability of the results was of greater importance than the ‘conservation of the original image traits’. This motivation resulted in mostly heuristic methods, which even altered the images to form pseudo-color images or false-color images (Sec. 9.1.3).


Mean Square Error Spatial Frequency Power Spectral Density Image Restoration Impulse Response Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Harry Andrews and Bobby Hunt. Digital Image Restoration. Prentice Hall, 1977.Google Scholar
  2. [2]
    Kenneth Castleman. Digital Image Processing. Prentice Hall, 1996.Google Scholar
  3. [3]
    Subrahmanyan Chandrasekhar. Radiative Transfer. Courier Corporation, 1960.Google Scholar
  4. [4]
    Kris Dines and Avinash Kak. Constrained least squares filtering. IEEE Transactions on Acoustics, Speech and Signal Processing, 25(4):346–350, 1977.CrossRefGoogle Scholar
  5. [5]
    Rafael Gonzalez and RichardWoods. Digital image processing. Pearson Prentice Hall, 3rd edition, 2008.Google Scholar
  6. [6]
    Jan Horn. Zweidimensionale Geschwindigkeitsmessung texturierter Oberflächen mit flächenhaften bildgebenden Sensoren. PhD thesis, Universität Karlsruhe (TH), 2007.Google Scholar
  7. [7]
    R. Hufnagel and N. Stanley. An algorithm for the machine calculation of complex Fourier series. Journal of the Optical Society of America, 54(1):52–61, 1964.CrossRefGoogle Scholar
  8. [8]
    B. Hunt. The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer. IEEE Transactions on Computers, C-22(9):805–812, 1973.CrossRefGoogle Scholar
  9. [9]
    Curtis Mobley. Light and water: Radiative transfer in natural waters. Academic press, 1994.Google Scholar
  10. [10]
    Fernando Puente León and Uwe Kiencke. Messtechnik – Systemtheorie für Ingenieure und Informatiker. Springer, 9th edition, 2012.Google Scholar
  11. [11]
    Alexander Sawchuk. Space-variant image restoration by coordinate transformations. Journal of the Optical Society of America, 64(2):138–144, 1974.CrossRefGoogle Scholar
  12. [12]
    Thomas Stephan and Jürgen Beyerer. Computergraphical Model for Underwater Image Simulation and Restoration. In ICPR Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI), pages 73–79, 2014.Google Scholar
  13. [13]
    Thomas Stephan, Peter Frühberger, StefanWerling, and Michael Heizmann. Model based image restoration for underwater images. In SPIE Optical Metrology 2013, page 87911F. International Society for Optics and Photonics, 2013. 14. Friedrich Wahl. Digitale Bildsignalverarbeitung. Springer, 1989.Google Scholar
  14. [14]
    Friedrich Wahl. Digitale Bildsignalverarbeitung. Springer, 1989.Google Scholar
  15. [15]
    Wikipedia. Optical resolution,

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jürgen Beyerer
    • 1
    Email author
  • Fernando Puente León
    • 2
  • Christian Frese
    • 3
  1. 1.Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung and The Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer-Institut für Optronik, Systemtechnik und BildauswertungKarlsruheGermany

Personalised recommendations