Skip to main content

Lessons from a Life: The Journey of Spinal Neurosurgery in the United States

  • Chapter
Advanced Concepts in Lumbar Degenerative Disk Disease

Abstract

The history of spine instrumentation is rich in controversy and colorful personalities who have led this field over the past century. Herein, we review the major advances and contributions of several generations of pioneers. The efforts of these individuals have made spinal instrumentation a precise, safe, and effective treatment modality. With improvements in regenerative medicine, nanotechnology, and surgical instrumentation, we are likely to see another Renaissance in the treatment of spinal disorders in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodrich JT. History of spine surgery in the ancient and medieval worlds. Neurosurg Focus. 2004;16(1):1–13.

    Google Scholar 

  2. Bigelow HJ. Insensibility during surgical operations produced by inhalation. Boston Med Surg J. 1846;35(16):309–17.

    Article  Google Scholar 

  3. Lister J. On the antiseptic principle in the practice of surgery. Br Med J. 1867;2(351):246–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wilkins WF. Separation of the vertebrae with protrusion of hernia between the same. St Louis Med Surg J. 1888;54:340–1.

    Google Scholar 

  5. Eggers GWN. Berthold Ernest Hadra (1842–1903): a biography. Clin Orthop. 1961;21:32–9.

    Google Scholar 

  6. Hadra BE. The classic: wiring of the vertebrae as a means of immobilization in fracture and Potts’ disease. Berthold E. Hadra. Med Times and Register, Vol 22, May 23, 1891. Clin Orthop Relat Res. 1975;112:4–8.

    Article  PubMed  Google Scholar 

  7. Pott P. Remarks on that kind of palsy of the lower limbs, which is frequently found to accompany a curvature of the spine, and is supposed to be caused by it. Together with its method of cure. To which are added, observations on the necessity and propriety of amputation, in certain cases and under certain circumstances. London Johnson; 1779.

    Google Scholar 

  8. Hadra BE. Wiring the spinous processes in Pott’s disease. Trans Am Orthop Assoc. 1891;4:206–10.

    Google Scholar 

  9. Lovett RW. The forcible correction of the deformity in Pott’s disease: a review of the recent literature. Boston Med Surg J. 1898;138:228–30.

    Google Scholar 

  10. Allison N. Pott’s disease treated by ankylosing operations on the spinal column: a review of recent literature. Interstate Med J. 1912;19:456–7.

    Google Scholar 

  11. Lange F. Support for the spondylitic spine by means of buried steel bars, attached to the vertebrae. Am J Orthop Surg. 1910;28:344–61.

    Google Scholar 

  12. Venable CS, Stuck WG, Beach A. The effects on bone of the presence of metals; based upon electrolysis: an experimental study. Ann Surg. 1937;105(6):917–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Venable CS, Stuck WG. Electrolysis controlling factor in the use of metals in treating fractures. JAMA. 1938;111(15):1349–52.

    Google Scholar 

  14. Venable CS, Stuck WG. Three years’ experience with vitallium in bone surgery. Ann Surg. 1941;114(2):309–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Leventhal GS. Titanium, a metal for surgery. J Bone Joint Surg Am. 1951;33-A(2):473–4.

    CAS  PubMed  Google Scholar 

  16. Bannon BP, Mild EE. Titanium alloys for biomaterial application: an overview. In: Luckey HA, Kubli F Jr, eds. Titanium alloys in surgical implants. American society for testing and materials (ASTM STP796); 1983:7–15.

    Google Scholar 

  17. Knott PT, Mardjetko SM, Kim RH, Cotter TM, Dunn MM, Patel ST, Spencer MJ, Wilson AS, Tager DS. A comparison of magnetic and radiographic imaging artifact after using three types of metal rods: stainless steel, titanium, and vitallium. Spine J. 2010;10(9):789–94.

    Article  PubMed  Google Scholar 

  18. Bradley RJ, Chaoi EYS, Friedman J. Biomechanics and biomaterials. In: Dee R, Hurst L, Gruber M, Kottmaier S, eds. Principles of Orthopedic Practice (2nd ed). New York: McGraw-Hill; 1997:151–78.

    Google Scholar 

  19. Albee FH. Transplantation of a portion of the tibia into the spine for Pott’s disease: a preliminary report. JAMA. 1911;57(11):885–6.

    Google Scholar 

  20. Hibbs RA. An operation for progressive spinal deformities: a preliminary report of three cases from the service of the orthopaedic hospital. N Y Med J. 1911;93:1013–6.

    Google Scholar 

  21. Hibbs RA. A further consideration of an operation for Pott’s disease of the spine: with report of cases from the service of the New York Orthopaedic Hospital. Ann Surg. 1912;55(5):682–8.

    Google Scholar 

  22. Galloway HPH. The treatment of paralytic scoliosis by bone-grafting. Am J Orthop Surg. 1914;212(2):253–8.

    Google Scholar 

  23. Smith EH. A consideration of the relative merits of the Albee operation and the Hibbs operation. Cal State J Med. 1915;13(5):194–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Burns BH. An operation for spondylolisthesis. Lancet. 1933;221:1233–5.

    Google Scholar 

  25. Cloward RB. The treatment of ruptured lumbar intervertebral disc by vertebral body fusion. III. Method of use of banked bone. Ann Surg. 1952;136(6):987–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Toumey JW. Internal fixation in fusion of the lumbosacral joints. Lahey Clin Bull. 1943;3:188–91.

    Google Scholar 

  27. King D. Internal fixation for lumbosacral fusion. Am J Surg. 1944;66(3):357–61.

    Google Scholar 

  28. Harrington PR. The history and development of Harrington instrumentation. Clin Orthop Relat Res. 1973;93:110–2.

    Article  PubMed  Google Scholar 

  29. Harrington PR. Treatment of scoliosis: correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44-A:591–610.

    Google Scholar 

  30. Andén U, Lake A, Nordwall A. The role of the anterior longitudinal ligament in Harrington rod fixation of unstable thoracolumbar spinal fractures. Spine (Phila Pa 1976). 1980;5(1):23–5.

    Google Scholar 

  31. Wang GJ, Whitehill R, Stamp WG, Rosenberger R. The treatment of fracture dislocations of the thoracolumbar spine with halofemoral traction and Harrington rod instrumentation. Clin Orthop Relat Res. 1979;142:168–75.

    PubMed  Google Scholar 

  32. Livingston KE, Perrin RG. The neurosurgical management of spinal metastases causing cord and cauda equina compression. J Neurosurg. 1978;49(6):839–43.

    Article  CAS  PubMed  Google Scholar 

  33. Sundaresan N, Galicich JH, Lane JM. Harrington rod stabilization for pathological fractures of the spine. J Neurosurg. 1984;60(2):282–6.

    Article  CAS  PubMed  Google Scholar 

  34. Bridwell KH. Spinal instrumentation in the management of adolescent scoliosis. Clin Orthop Relat Res. 1997;335:64–72.

    PubMed  Google Scholar 

  35. Lagrone MO, Bradford DS, Moe JH, Lonstein JE, Winter RB, Ogilvie JW. Treatment of symptomatic flatback after spinal fusion. J Bone Joint Surg Am. 1988;70(4):569–80.

    CAS  PubMed  Google Scholar 

  36. Erwin WD, Dickson JH, Harrington PR. Clinical review of patients with broken Harrington rods. J Bone Joint Surg Am. 1980;62(8):1302–7.

    CAS  PubMed  Google Scholar 

  37. Luque ER. Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res. 1982;163:192–8.

    PubMed  Google Scholar 

  38. Johnston CE II, Happel LT Jr, Norris R, Burke SW, King AG, Roberts JM. Delayed paraplegia complicating sublaminar segmental spinal instrumentation. J Bone Joint Surg Am. 1986;68(4):556–63.

    Google Scholar 

  39. Wilber RG, Thompson GH, Shaffer JW, Brown RH, Nash CL Jr. Postoperative neurological deficits in segmental spinal instrumentation: a study using spinal cord monitoring. J Bone Joint Surg Am. 1984;66(8):1178–87.

    Google Scholar 

  40. Drummond D, Guadagni J, Keene JS, Breed A, Narechania R. Interspinous process segmental spinal instrumentation. J Pediatr Orthop. 1984;4(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  41. Thompson WA, Ralston EL. Pseudarthrosis following spine fusion. J Bone Joint Surg Am. 1949;31A(2):400–5.

    CAS  PubMed  Google Scholar 

  42. Bosworth DM. Surgery of the spine. American Academy of Orthopaedic Surgeons instructional course lectures. Ann Arbor: Edwards Brothers Incorporated; 1957:39–55.

    Google Scholar 

  43. Boucher HH. A method of spinal fusion. J Bone Joint Surg. 1959;41B:248–59.

    Google Scholar 

  44. Roy-Camille R, Roy-Camille M, Demeulenaere C. Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med. 1970;78(32):1447–8.

    CAS  PubMed  Google Scholar 

  45. Roy-Camille R, Benazet J-P, Desauge JP, Kuntz F. Lumbosacral fusion with pedicular screw plating instrumentation: a 10-year follow-up. Acta Orthop Scand Suppl. 1993;64(251 Suppl):100–4.

    Google Scholar 

  46. Abumi K, Panjabi MM, Duranceau J. Biomechanical evaluation of spinal fixation devices. Part III. Stability provided by six spinal fixation devices and interbody bone graft. Spine (Phila Pa 1976). 1989;14(11):1249–55.

    Article  CAS  Google Scholar 

  47. Krag MH. Biomechanics of thoracolumbar spinal fixation: a review. Spine (Phila Pa 1976). 1991;16(3 Suppl):S84–99.

    Google Scholar 

  48. Steffee AD, Biscup RS, Sitkowski DJ. Segmental spine plates with pedicle screw fixation: a new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop Relat Res. 1986;203:45–53.

    Google Scholar 

  49. Cotrel Y, Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach. Rev Chir Orthop Reparatrice Appar Mot. 1984;70(6):489–94.

    CAS  PubMed  Google Scholar 

  50. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10–23.

    CAS  PubMed  Google Scholar 

  51. Cheh G, Bridwell KH, Lenke LG, Buchowski JM, Daubs MD, Kim Y, Baldus C. Adjacent segment disease following lumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine (Phila Pa 1976). 2007;32(20):2253–7.

    Article  Google Scholar 

  52. Dekutoski MB, Schendel MJ, Ogilvie JW, Olsewski JM, Wallace LJ, Lewis JL. Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976). 1994;19(15):1745–51.

    Article  CAS  Google Scholar 

  53. Ha KY, Schendel MJ, Lewis JL, Ogilvie JW. Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. J Spinal Disord. 1993;6(2):99–105.

    Article  CAS  PubMed  Google Scholar 

  54. Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J. 2004;4(6 Suppl):190S–4.

    Article  PubMed  Google Scholar 

  55. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 2004;29(17):1938–44.

    Article  Google Scholar 

  56. McKenzie AH. Fernstrom intervertebral disc arthroplasty: a long-tern evaluation. Orthop Int Ed. 1995;3:313–24.

    Google Scholar 

  57. Fernström U. Arthroplasty with intercorporal endoprosthesis in herniated disc and in painful disc. Acta Chir Scand Suppl. 1966;357:154–9.

    Google Scholar 

  58. Gallie WE. Fractures and dislocations of the cervical spine. Am J Surg. 1939;46(3):495–9.

    Google Scholar 

  59. Grob D, Crisco JJ III, Panjabi MM, Wang P, Dvorak J. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine (Phila Pa 1976). 1992;17(5):480–90.

    Article  CAS  Google Scholar 

  60. Brooks AL, Jenkins EB. Atlanto-axial arthrodesis by the wedge compression method. J Bone Joint Surg Am. 1978;60(3):279–84.

    CAS  PubMed  Google Scholar 

  61. Tucker HH. Technical report: method of fixation of subluxed or dislocated cervical spine below C1-C2. Can J Neurol Sci. 1975;2(4):381–2.

    CAS  PubMed  Google Scholar 

  62. Holness RO, Huestis WS, Howes WJ, Langille RA. Posterior stabilization with an interlaminar clamp in cervical injuries: technical note and review of the long term experience with the method. Neurosurgery. 1984;14(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  63. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res. 1984;189:125–41.

    PubMed  Google Scholar 

  64. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the unstable cervical spine by posterior osteosynthesis with plates and screws. In: The Cervical Spine Research Society Editorial Committee, ed. The Cervical Spine. 2nd ed. Philadelphia: JB Lippincott; 1989:390–403.

    Google Scholar 

  65. An HS, Coppes MA. Posterior cervical fixation for fracture and degenerative disc disease. Clin Orthop Relat Res. 1997;335:101–11.

    Article  PubMed  Google Scholar 

  66. Anderson PA, Henley MB, Grady MS, Montesano PX, Winn HR. Posterior cervical arthrodesis with AO reconstruction plates and bone graft. Spine (Phila Pa 1976). 1991;16(3 Suppl):S72–9.

    Google Scholar 

  67. Jeanneret B, Gebhard JS, Magerl F. Transpedicular screw fixation of articular mass fracture-separation: results of an anatomical study and operative technique. J Spinal Disord. 1994;7(3):222–9.

    Article  CAS  PubMed  Google Scholar 

  68. Fielding JW. The status of arthrodesis of the cervical spine. J Bone Joint Surg Am. 1988;70(10):1571–4.

    CAS  PubMed  Google Scholar 

  69. Jeanneret B. Posterior rod system of the cervical spine: a new implant allowing optimal screw insertion. Eur Spine J. 1996;5(5):350–6.

    Article  CAS  PubMed  Google Scholar 

  70. Abumi K, Itoh H, Taneichi H, Kaneda K. Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: description of the techniques and preliminary report. J Spinal Disord. 1994;7(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  71. Dickman CA, Sonntag VK, Papadopoulos SM, Hadley MN. The interspinous method of posterior atlantoaxial arthrodesis. J Neurosurg. 1991;74(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  72. Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine (Phila Pa 1976). 2001;26(22):2467–71.

    Article  CAS  Google Scholar 

  73. Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien). 1994;129(1–2):47–53.

    Article  CAS  Google Scholar 

  74. Anderson RC, Ragel BT, Mocco J, Bohman LE, Brockmeyer DL. Selection of a rigid internal fixation construct for stabilization at the craniovertebral junction in pediatric patients. J Neurosurg. 2007;107(1 Suppl):36–42.

    PubMed  Google Scholar 

  75. Leonard JR, Wright NM. Pediatric atlantoaxial fixation with bilateral, crossing C-2 translaminar screws. Technical note. J Neurosurg. 2006;104(1 Suppl):59–63.

    PubMed  Google Scholar 

  76. Böhler J. Immediate and early treatment of traumatic paraplegias. Z Orthop Ihre Grenzgeb. 1967;103(4):512–29.

    Google Scholar 

  77. Gonugunta V, Krishnaney AA, Benzel EC. Anterior cervical plating. Neurol India. 2005;53(4):424–32.

    Article  CAS  PubMed  Google Scholar 

  78. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion: a prospective multicenter study. Spine (Phila Pa 1976). 1995;20(20):2211–6.

    Google Scholar 

  79. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;8(329):300–9.

    Article  CAS  Google Scholar 

  80. Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. J Am Acad Orthop Surg. 2001;9(3):210–8.

    CAS  PubMed  Google Scholar 

  81. Kurz LT, Garfin SR, Booth RE Jr. Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine (Phila Pa 1976). 1989;14(12):1324–31.

    Article  CAS  Google Scholar 

  82. Kahnberg K-E. Biological principles of bone. In: Kahnberg K-E. Bone Grafting Techniques for Maxillary Implants. Oxford, UK: Blackwell Munksgaard; 2005:1–3.

    Google Scholar 

  83. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.

    Article  CAS  PubMed  Google Scholar 

  84. Girardi FP, Cammisa FP Jr. The effect of bone graft extenders to enhance the performance of iliac crest bone grafts in instrumented lumbar spine fusion. Orthopedics. 2003;26(5 Suppl):s545–8.

    PubMed  Google Scholar 

  85. Cunningham BW, Kanayama M, Parker LM, Weis JC, Sefter JC, Fedder IL, McAfee PC. Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine: a comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine (Phila Pa 1976). 1999;24(6):509–18.

    Google Scholar 

  86. David SM, Gruber HE, Meyer RA Jr, Murakami T, Tabor OB, Howard BA, Wozney JM, Hanley EN Jr. Lumbar spinal fusion using recombinant human bone morphogenetic protein in the canine: a comparison of three dosages and two carriers. Spine (Phila Pa 1976). 1999;24(19):1973–9.

    Google Scholar 

  87. Fischgrund JS, James SB, Chabot MC, Hankin R, Herkowitz HN, Wozney JM, Shirkhoda A. Augmentation of autograft using rhBMP-2 and different carrier media in the canine spinal fusion model. J Spinal Disord. 1997;10(6):467–72.

    Article  CAS  PubMed  Google Scholar 

  88. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.

    Article  PubMed  Google Scholar 

  89. Guppy KH, Paxton EW, Harris J, Alvarez J, Bernbeck J. Does bone morphogenetic protein change the operative nonunion rates in spine fusions? Spine (Phila Pa 1976). 2014;39(22):1831–9.

    Google Scholar 

  90. Hodges SD, Eck JC, Newton D. Retrospective study of posterior cervical fusions with rhBMP-2. Orthopedics. 2012;35(6):e895–8.

    Article  PubMed  Google Scholar 

  91. Kim HJ, Buchowski JM, Zebala LP, Dickson DD, Koester L, Bridwell KH. RhBMP-2 is superior to iliac crest bone graft for long fusions to the sacrum in adult spinal deformity: 4- to 14-year follow-up. Spine (Phila Pa 1976). 2013;38(14):1209–15.

    Article  Google Scholar 

  92. Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009;302(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  93. Lad SP, Bagley JH, Karikari IO, Babu R, Ugiliweneza B, Kong M, Isaacs RE, Bagley CA, Gottfried ON, Patil CG, Boakye M. Cancer after spinal fusion: the role of bone morphogenetic protein. Neurosurgery. 2013;73(3):440–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker K. H. Sonntag MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Curry, B.P., Kalani, M.Y.S., Sonntag, V.K.H. (2016). Lessons from a Life: The Journey of Spinal Neurosurgery in the United States. In: Pinheiro-Franco, J., Vaccaro, A., Benzel, E., Mayer, H. (eds) Advanced Concepts in Lumbar Degenerative Disk Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47756-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47756-4_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47755-7

  • Online ISBN: 978-3-662-47756-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics