Skip to main content

A Word from the Inventor of Intervertebral Dynamic Fixation: On Interspinous Devices

  • Chapter
Advanced Concepts in Lumbar Degenerative Disk Disease
  • 2104 Accesses

Abstract

In this chapter, Professor Sénégas provides a unique perspective regarding a field of spine surgery that he pioneered. His account, in conversation form, is unique from both a historical and clinical perspective.

In this chapter, Professor Sénégas provides a unique perspective regarding a field of spine surgery that he pioneered. His account in conversation form, is unique from both a historical and clinical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Senegas J. Surgery of the intervertebral ligaments, alternative to arthrodesis in the treatment of degenerative instabilities. Acta Orthop Belg. 1991;57 Suppl 1:221–6.

    PubMed  Google Scholar 

  2. Senegas J, Etchevers JP, Vital JM, Baulny D, Grenier F. Recalibration of the lumbar canal, an alternative to laminectomy in the treatment of lumbar canal stenosis. Rev Chir Orthop Reparatrice Appar Mot. 1988;74:15–22.

    CAS  PubMed  Google Scholar 

  3. Fielding LC, Alamin TF, Voronov LI, Carandang G, Havey RM, Patwardhan AG. Parametric and cadaveric models of lumbar flexion instability and flexion restricting dynamic stabilization system. Eur Spine J. 2013;22:2710–8.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Fry RW, Alamin TF, Voronov LI, Fielding LC, Ghanayem AJ, Parikh A, Carandang G, McIntosh BW, Havey RM, Patwardhan AG. Compressive preload reduces segmental flexion instability after progressive destabilization of the lumbar spine. Spine (Phila Pa 1976). 2014;39:E74–81.

    Article  Google Scholar 

  5. Senegas J, Vital JM, Pointillart V, Mangione P. Long-term actuarial survivorship analysis of an interspinous stabilization system. Eur Spine J. 2007;16:1279–87.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am. 2004;86-A:1497–503.

    PubMed  Google Scholar 

  7. Senegas J, Vital JM, Pointillart V, Mangione P. Clinical evaluation of a lumbar interspinous dynamic stabilization device (the Wallis system) with a 13-year mean follow-up. Neurosurg Rev. 2009;32:335–41; discussion 341–2.

    Article  PubMed  Google Scholar 

  8. Glaser J, Stanley M, Sayre H, Woody J, Found E, Spratt K. A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation. Spine (Phila Pa 1976). 2003;28:1390–5.

    Google Scholar 

  9. Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J. 2002;11 Suppl 2:S164–9.

    PubMed Central  PubMed  Google Scholar 

  10. Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine (Phila Pa 1976). 2003;28:2192–7.

    Article  Google Scholar 

  11. Swanson KE, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA. The effects of an interspinous implant on intervertebral disc pressures. Spine (Phila Pa 1976). 2003;28:26–32.

    Article  Google Scholar 

  12. Kaech DL, Fernandez C, Haninec P. Preliminary experience with the interspinous “U” [Article in French]. Rachis. 2001;13:403–4.

    Google Scholar 

  13. Caserta S, La Maida GA, Misaggi B, Peroni D, Pietrabissa R, Raimondi MT, Redaelli A. Elastic stabilization alone or combined with rigid fusion in spinal surgery: a biomechanical study and clinical experience based on 82 cases. Eur Spine J. 2002;11 Suppl 2:S192–7.

    PubMed Central  PubMed  Google Scholar 

  14. Zhou D, Nong LM, Du R, Gao GM, Jiang YQ, Xu NW. Effects of interspinous spacers on lumbar degenerative disease. Exp Ther Med. 2013;5:952–6.

    PubMed Central  PubMed  Google Scholar 

  15. Lee SH, Enes M, Hoogland T. Soft stabilization with interspinous artificial ligament for mildly unstable lumbar spinal stenosis: a multicenter comparison. Arch Orthop Trauma Surg. 2010;130:1335–41.

    Article  PubMed  Google Scholar 

  16. Lee SH, Lee JH, Hong SW, Shim CS, Chung SE, Yoo SH, Lee HY. Factors affecting clinical outcomes in treating patients with grade 1 degenerative spondylolisthesis using interspinous soft stabilization with a tension band system: a minimum 5-year follow-up. Spine (Phila Pa 1976). 2012;37:563–72.

    Article  Google Scholar 

  17. Tamburrelli FC, Proietti L, Logroscino CA. Critical analysis of lumbar interspinous devices failures: a retrospective study. Eur Spine J. 2011;20 Suppl 1:S27–35.

    Article  PubMed  Google Scholar 

  18. Rosales-Olivares LM, Alpizar-Aguirre A, Miramontes-Martinez V, Zarate-Kalfopulus B, Reyes-Sanchez A. Dynamic interspinous stabilization in lumbar discectomy: 4-year follow-up. Cir Cir. 2010;78:492–6.

    PubMed  Google Scholar 

  19. Gunzburg R, Szpalski M, Callary SA, Colloca CJ, Kosmopoulos V, Harrison D, Moore RJ. Effect of a novel interspinous implant on lumbar spinal range of motion. Eur Spine J. 2009;18:696–703.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Pfeiffer M. Interspinous implant “InSWing(R)” for the lumbar spine. Oper Orthop Traumatol. 2010;22:512–23.

    Article  PubMed  Google Scholar 

  21. Lee DY, Lee SH, Shim CS, Lee HY. Decompression and interspinous dynamic stabilization using the locker for lumbar canal stenosis associated with low-grade degenerative spondylolisthesis. Minim Invasive Neurosurg. 2010;53:117–21.

    Article  CAS  PubMed  Google Scholar 

  22. Shim CS, Park SW, Lee SH, Lim TJ, Chun K, Kim DH. Biomechanical evaluation of an interspinous stabilizing device, Locker. Spine (Phila Pa 1976). 2008;33:E820–7.

    Article  Google Scholar 

  23. Beyer F, Yagdiran A, Neu P, Kaulhausen T, Eysel P, Sobottke R. Percutaneous interspinous spacer versus open decompression: a 2-year follow-up of clinical outcome and quality of life. Eur Spine J. 2013;22:2015–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bonaldi G, Bertolini G, Marrocu A, Cianfoni A. Posterior vertebral arch cement augmentation (spinoplasty) to prevent fracture of spinous processes after interspinous spacer implant. AJNR Am J Neuroradiol. 2012;33:522–8.

    Article  CAS  PubMed  Google Scholar 

  25. Nishida K, Doita M, Kakutani K, Maeno K, Yurube T, Kurosaka M. Development of percutaneously insertable/removable interspinous process spacer for treatment of posture-dependent lumbar spinal-canal stenosis: preclinical feasibility study using porcine model. Eur Spine J. 2012;21:1178–85.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hrabalek L, Wanek T, Machac J, Vaverka M, Langova K, Kalita O, Krahulik D, Novak V, Houdek M. Percutaneous interspinous dynamic stabilization (in-space) in patients with degenerative disease of the lumbosacral spine – a prospective study. Rozhl Chir. 2012;91:311–6.

    CAS  PubMed  Google Scholar 

  27. Kantelhardt SR, Torok E, Gempt J, Stoffel M, Ringel F, Stuer C, Meyer B. Safety and efficacy of a new percutaneously implantable interspinous process device. Acta Neurochir (Wien). 2010;152:1961–7.

    Article  Google Scholar 

  28. Goyal A, Goel VK, Mehta A, Dick D, Chinthakunta SR, Ferrara L. Cyclic loads do not compromise functionality of the interspinous spacer or cause damage to the spinal segment: an in vitro analysis. J Long Term Eff Med Implants. 2008;18:289–302.

    Article  PubMed  Google Scholar 

  29. Loguidice V, Bini W, Shabat S, Miller LE, Block JE. Rationale, design and clinical performance of the Superion(R) Interspinous Spacer: a minimally invasive implant for treatment of lumbar spinal stenosis. Expert Rev Med Devices. 2011;8:419–26.

    Article  PubMed  Google Scholar 

  30. Yao QQ, Zheng SN, Cheng L, Yuan P, Zhang DS, Liao XW, Xu Y, Wang LM. Effects of a new shape-memory alloy interspinous process device on pressure distribution of the intervertebral disc and zygapophyseal joints in vitro. Orthop Surg. 2010;2:38–45.

    Article  PubMed  Google Scholar 

  31. Zheng S, Yao Q, Cheng L, Xu Y, Yuan P, Zhang D, Liao X, Wang L. The effects of a new shape-memory alloy interspinous process device on the distribution of intervertebral disc pressures in vitro. J Biomed Res. 2010;24:115–23.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bono CM, Vaccaro AR. Interspinous process devices in the lumbar spine. J Spinal Disord Tech. 2007;20:255–61.

    Article  PubMed  Google Scholar 

  33. Chen H, Ding W. Research advancement of lumbar inter-spinous process non-fusion techniques. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24:368–73.

    PubMed  Google Scholar 

  34. Crawford RJ, Price RI, Singer KP. The effect of interspinous implant surgery on back surface shape and radiographic lumbar curvature. Clin Biomech (Bristol, Avon). 2009;24:467–72.

    Article  CAS  Google Scholar 

  35. Gomleksiz C, Sasani M, Oktenoglu T, Ozer AF. A short history of posterior dynamic stabilization. Adv Orthop. 2012;2012:629–98.

    Article  Google Scholar 

  36. Kaner T, Sasani M, Oktenoglu T, Ozer AF. Dynamic stabilization of the spine: a new classification system. Turk Neurosurg. 2010;20:205–15.

    PubMed  Google Scholar 

  37. Moojen WA, Arts MP, Jacobs WC, van Zwet EW, van den Akker-van Marle ME, Koes BW, Vleggeert-Lankamp CL, Peul WC. Interspinous process device versus standard conventional surgical decompression for lumbar spinal stenosis: randomized controlled trial. BMJ. 2013;347:f6415.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Murtagh RD, Quencer RM, Castellvi AE, Yue JJ. New techniques in lumbar spinal instrumentation: what the radiologist needs to know. Radiology. 2011;260:317–30.

    Article  PubMed  Google Scholar 

  39. Sangiorgio SN, Sheikh H, Borkowski SL, Khoo L, Warren CR, Ebramzadeh E. Comparison of three posterior dynamic stabilization devices. Spine (Phila Pa 1976). 2011;36:E1251–8.

    Article  Google Scholar 

  40. Mayer HM, Zentz F, Siepe C, Korge A. Percutaneous interspinous distraction for the treatment of dynamic lumbar spinal stenosis and low back pain. Oper Orthop Traumatol. 2010;22:495–511.

    Article  PubMed  Google Scholar 

  41. Sobottke R, Schluter-Brust K, Kaulhausen T, Rollinghoff M, Joswig B, Stutzer H, Eysel P, Simons P, Kuchta J. Interspinous implants (X Stop, Wallis, Diam) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J. 2009;18:1494–503.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, Implicito DA, Martin MJ, Johnson 2nd DR, Skidmore GA, Vessa PP, Dwyer JW, et al. A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X STOP interspinous implant: 1-year results. Eur Spine J. 2004;13:22–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Brodke DS, Annis P, Lawrence BD, Woodbury AM, Daubs MD. Reoperation and revision rates of 3 surgical treatment methods for lumbar stenosis associated with degenerative scoliosis and spondylolisthesis. Spine (Phila Pa 1976). 2013;38:2287–94.

    Article  Google Scholar 

  44. Kim DH, Shanti N, Tantorski ME, Shaw JD, Li L, Martha JF, Thomas AJ, Parazin SJ, Rencus TC, Kwon B. Association between degenerative spondylolisthesis and spinous process fracture after interspinous process spacer surgery. Spine J. 2012;12:466–72.

    Article  PubMed  Google Scholar 

  45. Krauss WE. Interspinous distraction devices: too good to be true? Yes. World Neurosurg. 2013;80:78–9.

    Article  PubMed  Google Scholar 

  46. Schizas C, Pralong E, Tzioupis C, Kulik G. Interspinous distraction in lumbar spinal stenosis: a neurophysiological perspective. Spine (Phila Pa 1976). 2013;38:2113–7.

    Article  Google Scholar 

  47. Sobottke R, Rollinghoff M, Siewe J, Schlegel U, Yagdiran A, Spangenberg M, Lesch R, Eysel P, Koy T. Clinical outcomes and quality of life 1 year after open microsurgical decompression or implantation of an interspinous stand-alone spacer. Minim Invasive Neurosurg. 2010;53:179–83.

    Article  CAS  PubMed  Google Scholar 

  48. Verhoof OJ, Bron JL, Wapstra FH, van Royen BJ. High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17:188–92.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Chou D, Lau D, Hermsmeyer J, Norvell D. Efficacy of interspinous device versus surgical decompression in the treatment of lumbar spinal stenosis: a modified network analysis. Evid Based Spine Care J. 2011;2:45–56.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Barbagallo GM, Corbino LA, Olindo G, Foti P, Albanese V, Signorelli F. The “sandwich phenomenon”: a rare complication in adjacent, double-level X-stop surgery: report of three cases and review of the literature. Spine (Phila Pa 1976). 2010;35:E96–100.

    Article  Google Scholar 

  51. Barbagallo GM, Olindo G, Corbino L, Albanese V. Analysis of complications in patients treated with the X-Stop Interspinous Process Decompression System: proposal for a novel anatomic scoring system for patient selection and review of the literature. Neurosurgery. 2009;65:111–9; discussion 119–20.

    Article  PubMed  Google Scholar 

  52. Idler C, Zucherman JF, Yerby S, Hsu KY, Hannibal M, Kondrashov D. A novel technique of intra-spinous process injection of PMMA to augment the strength of an inter-spinous process device such as the X STOP. Spine (Phila Pa 1976). 2008;33:452–6.

    Article  Google Scholar 

  53. Miller JD, Miller MC, Lucas MG. Erosion of the spinous process: a potential cause of interspinous process spacer failure. J Neurosurg Spine. 2010;12:210–3.

    Article  PubMed  Google Scholar 

  54. Kabir SM, Gupta SR, Casey AT. Lumbar interspinous spacers: a systematic review of clinical and biomechanical evidence. Spine (Phila Pa 1976). 2010;35:E1499–506.

    Article  Google Scholar 

  55. Kim DH, Tantorski M, Shaw J, Martha J, Li L, Shanti N, Rencu T, Parazin S, Kwon B. Occult spinous process fractures associated with interspinous process spacers. Spine (Phila Pa 1976). 2011;36:E1080–5.

    Article  Google Scholar 

  56. Chou D, Lau D, Skelly A, Ecker E. Dynamic stabilization versus fusion for treatment of degenerative spine conditions. Evid Based Spine Care J. 2011;2:33–42.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Costi JJ, Freeman BJ, Elliott DM. Intervertebral disc properties: challenges for biodevices. Expert Rev Med Devices. 2011;8:357–76.

    Article  PubMed  Google Scholar 

  58. Bonaldi G. Minimally invasive dynamic stabilization of the degenerated lumbar spine. Neuroimaging Clin N Am. 2010;20:229–41.

    Article  PubMed  Google Scholar 

  59. Albietz JS, Rosasarellano P, Fleming JC, Gurr KR, Bailey SI, Bailey CS. An anatomic study of the interspinous space of the lumbosacral spine. Eur Spine J. 2012;21:145–8.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Sobottke R, Koy T, Rollinghoff M, Siewe J, Kreitz T, Muller D, Bangard C, Eysel P. Computed tomography measurements of the lumbar spinous processes and interspinous space. Surg Radiol Anat. 2010;32:731–8.

    Article  PubMed  Google Scholar 

  61. Xia Q, Wang S, Passias PG, Kozanek M, Li G, Grottkau BE, Wood KB, Li G. In vivo range of motion of the lumbar spinous processes. Eur Spine J. 2009;18:1355–62.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Hartmann F, Dietz SO, Hely H, Rommens PM, Gercek E. Biomechanical effect of different interspinous devices on lumbar spinal range of motion under preload conditions. Arch Orthop Trauma Surg. 2011;131:917–26.

    Article  PubMed  Google Scholar 

  63. Park SW, Lim TJ, Park J. A biomechanical study of the instrumented and adjacent lumbar levels after In-Space interspinous spacer insertion. J Neurosurg Spine. 2010;12:560–9.

    Article  PubMed  Google Scholar 

  64. Lazaro BC, Brasiliense LB, Sawa AG, Reyes PM, Theodore N, Sonntag VK, Crawford NR. Biomechanics of a novel minimally invasive lumbar interspinous spacer: effects on kinematics, facet loads, and foramen height. Neurosurgery. 2010;66:126–32; discussion 132–3.

    Article  PubMed  Google Scholar 

  65. Heuer F, Schmidt H, Kafer W, Graf N, Wilke HJ. Posterior motion preserving implants evaluated by means of intervertebral disc bulging and annular fiber strains. Clin Biomech (Bristol, Avon). 2012;27:218–25.

    Article  Google Scholar 

  66. Wilke HJ, Drumm J, Haussler K, Mack C, Kettler A. Biomechanics of interspinous spacers. Orthopade. 2010;39:565–72.

    Article  PubMed  Google Scholar 

  67. Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J. 2008;17:1049–56.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Kaulhausen T, Siewe J, Eysel P, Knifka J, Notermans HP, Koebke J, Sobottke R. The role of the inter-/supraspinous ligament complex in stand-alone interspinous process devices: a biomechanical and anatomic study. J Neurol Surg A Cent Eur Neurosurg. 2012;73:65–72.

    Article  CAS  PubMed  Google Scholar 

  69. Hartmann F, Dietz SO, Kuhn S, Hely H, Rommens PM, Gercek E. Biomechanical comparison of an interspinous device and a rigid stabilization on lumbar adjacent segment range of motion. Acta Chir Orthop Traumatol Cech. 2011;78:404–9.

    CAS  PubMed  Google Scholar 

  70. Mao ZX, Jiang JM, Yan HB, Zhao WD, Wang FL, Wu Y, Li Y. Effect of Coflex interspinous stabilization and vertebral arch pedicle screw implantation on the stability of three-dimensional motions of the lumbar spine. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30:863–6.

    PubMed  Google Scholar 

  71. Trautwein FT, Lowery GL, Wharton ND, Hipp JA, Chomiak RJ. Determination of the in vivo posterior loading environment of the Coflex interlaminar-interspinous implant. Spine J. 2010;10:244–51.

    Article  PubMed  Google Scholar 

  72. Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ. Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon). 2008;23:242–7.

    Article  CAS  Google Scholar 

  73. Li CD, Sun HL, Lu HZ. Comparison of the effect of posterior lumbar interbody fusion with pedicle screw fixation and interspinous fixation on the stiffness of adjacent segments. Chin Med J (Engl). 2013;126:1732–7.

    Google Scholar 

  74. Li CD, Sun HL, Yu ZR. Biomechanical study of interspinous fixational effect on the stiffness of adjacent segments. Beijing Da Xue Xue Bao. 2011;43:657–60.

    PubMed  Google Scholar 

  75. Ilharreborde B, Shaw MN, Berglund LJ, Zhao KD, Gay RE, An KN. Biomechanical evaluation of posterior lumbar dynamic stabilization: an in vitro comparison between Universal Clamp and Wallis systems. Eur Spine J. 2011;20:289–96.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J. 2008;17:1057–65.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Yao Q, Wang S, Shin JH, Li G, Wood K. Motion characteristics of the lumbar spinous processes with degenerative disc disease and degenerative spondylolisthesis. Eur Spine J. 2013;22:2702–9.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Xu C, Ni WF, Tian NF, Hu XQ, Li F, Xu HZ. Complications in degenerative lumbar disease treated with a dynamic interspinous spacer (Coflex). Int Orthop. 2013;37:2199–204.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Zang L, Du P, Hai Y, Su QJ, Lu SB, Liu T. Device related complications of the Coflex interspinous process implant for the lumbar spine. Chin Med J (Engl). 2013;126:2517–22.

    Google Scholar 

  80. Zang L, Hai Y, Su QJ, Lu SB, Zhang CS, Yang JC, Guan L, Kang N, Meng XL, Liu T, et al. Device implanted complications of Coflex interspinous dynamic stabilization. Zhonghua Wai Ke Za Zhi. 2012;50:782–7.

    PubMed  Google Scholar 

  81. Lee CH, Hyun SJ, Kim KJ, Jahng TA, Yoon SH, Kim HJ. The efficacy of lumbar hybrid stabilization using the DIAM to delay adjacent segment degeneration: an intervention comparison study with a minimum two-year follow-up. Neurosurgery. 2013;73:ons224–32.

    Article  PubMed  Google Scholar 

  82. Anasetti F, Galbusera F, Aziz HN, Bellini CM, Addis A, Villa T, Teli M, Lovi A, Brayda-Bruno M. Spine stability after implantation of an interspinous device: an in vitro and finite element biomechanical study. J Neurosurg Spine. 2010;13(5):568–75.

    Google Scholar 

  83. Floman Y, Millgram MA, Smorgick Y, Rand N, Ashkenazi E. Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech. 2007;20:337–41.

    Article  PubMed  Google Scholar 

  84. Jia YH, Sun PF. Preliminary evaluation of posterior dynamic lumbar stabilization in lumbar degenerative disease in Chinese patients. Chin Med J (Engl). 2012;125:253–6.

    Google Scholar 

  85. Korovessis P, Repantis T, Zacharatos S, Zafiropoulos A. Does Wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion? Eur Spine J. 2009;18:830–40.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Liu B, Yin D, Wang QM, Chang YB, Zhan SQ, Zeng SX, Ke YH, Wang YS, Xiao D. Lumbar interspinous non-fusion techniques: comparison between Coflex and Wallis. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30:2455–8.

    PubMed  Google Scholar 

  87. Liu HY, Gu AQ, Zhu ZQ, Zhou J. The efficacy and complication analysis of interspinous dynamic device (Wallis) in patients of degenerative lumbar disease. Zhonghua Wai Ke Za Zhi. 2012;50:788–91.

    PubMed  Google Scholar 

  88. Sandu N, Schaller B, Arasho B, Orabi M. Wallis interspinous implantation to treat degenerative spinal disease: description of the method and case series. Expert Rev Neurother. 2011;11:799–807.

    Article  PubMed  Google Scholar 

  89. Sun HL, Li CD, Liu XY, Li H, Yu ZR, Lin JR, Yi XD, Liu H, Lu HL. Retrospective study of combined application of interspinous process fixation system and rigid fixation system for degenerative lumbar diseases. Zhonghua Wai Ke Za Zhi. 2010;48:363–7.

    PubMed  Google Scholar 

  90. Sun HL, Li CD, Liu XY, Lin JR, Yi XD, Liu H, Lu HL. Mid-term follow-up and analysis of the failure cases of interspinous implants for degenerative lumbar diseases. Beijing Da Xue Xue Bao. 2011;43:690–5.

    CAS  PubMed  Google Scholar 

  91. Xu L, Yu X, Bi LY, Liu GZ, Li PY, Qu Y, Jiao Y. Intermediate and long-term follow-up evaluation of posterior dynamic lumbar stabilization in lumbar degenerative disease. Zhonghua Wai Ke Za Zhi. 2012;50:792–6.

    PubMed  Google Scholar 

  92. Zhang ZJ, Pan B, Lu YS, Xu WG, Fu CD. Clinical analysis of an interspinous stabilization system (wallis) in treating lumbar degenerative disease. Zhongguo Gu Shang. 2012;25:463–7.

    PubMed  Google Scholar 

  93. Arrotegui I. Coflex interspinous spacer. Use in degenerative lumbar disc herniation. Acta Ortop Mex. 2010;24:187–90.

    PubMed  Google Scholar 

  94. Celik H, Derincek A, Koksal I. Surgical treatment of the spinal stenosis with an interspinous distraction device: do we really restore the foraminal height? Turk Neurosurg. 2012;22:50–4.

    PubMed  Google Scholar 

  95. Chao L, He Q, Ruan DK. The clinical observation about Coflex of dynamic interspinous implant on the treatment of lumbar spinal stenosis. Zhongguo Gu Shang. 2011;24:282–5.

    PubMed  Google Scholar 

  96. Du FT. Clinical analysis of interspinous dynamic internal fixation with the Coflex system in treating lumbar degenerative disease. Zhongguo Gu Shang. 2011;24:291–4.

    PubMed  Google Scholar 

  97. Liu J, Liu H, Li T, Zeng J, Song Y, Liu L, Gong Q. A comparative study between Coflex interspinous dynamic reconstruction and lumbar 360 degrees fusion in treating single-level degenerative lumbar spinal disorders. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011;25:693–8.

    PubMed  Google Scholar 

  98. Nachanakian A, El Helou A, Alaywan M. The interspinous spacer: a new posterior dynamic stabilization concept for prevention of adjacent segment disease. Adv Orthop. 2013;2013:637362.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Ni WF, Xu HZ, Zhou Y, Chi YL, Huang QS, Wang XY, Lin Y, Mao FM, Wu LJ. Clinical evaluation of interspinous process device Coflex for degenerative disk diseases. Zhonghua Wai Ke Za Zhi. 2012;50:776–81.

    PubMed  Google Scholar 

  100. Richter A, Schutz C, Hauck M, Halm H. Does an interspinous device (Coflex) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients. Eur Spine J. 2010;19:283–9.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Villarejo F, Carceller F, de la Riva AG, Budke M. Experience with coflex interspinous implant. Acta Neurochir Suppl. 2011;108:171–5.

    Article  CAS  PubMed  Google Scholar 

  102. Fabrizi AP, Maina R, Schiabello L. Interspinous spacers in the treatment of degenerative lumbar spinal disease: our experience with DIAM and Aperius devices. Eur Spine J. 2011;20 Suppl 1:S20–6.

    Article  PubMed  Google Scholar 

  103. Ha KY, Seo JY, Kwon SE, Son IN, Kim KW, Kim YH. Posterior dynamic stabilization in the treatment of degenerative lumbar stenosis: validity of its rationale. J Neurosurg Spine. 2013;18:24–31.

    Article  PubMed  Google Scholar 

  104. Holinka J, Krepler P, Matzner M, Grohs JG. Stabilising effect of dynamic interspinous spacers in degenerative low-grade lumbar instability. Int Orthop. 2011;35:395–400.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Hrabalek L, Machac J, Vaverka M. The DIAM spinal stabilisation system to treat degenerative disease of the lumbosacral spine. Acta Chir Orthop Traumatol Cech. 2009;76:417–23.

    CAS  PubMed  Google Scholar 

  106. Ryu SJ, Kim IS. Interspinous implant with unilateral laminotomy for bilateral decompression of degenerative lumbar spinal stenosis in elderly patients. J Korean Neurosurg Soc. 2010;47:338–44.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Zhao Y, Wang YP, Qiu GX, Zhao H, Zhang JG, Zhou X. Efficacy of the dynamic interspinous assisted motion system in clinical treatment of degenerative lumbar disease. Chin Med J (Engl). 2010;123:2974–7.

    Google Scholar 

  108. Hrabalek L, Wanek T, Adamus M. Percutaneous dynamic interspinous stabilisation for the treatment of juxtafacet cysts of the lumbar spine: prospective study. Acta Chir Orthop Traumatol Cech. 2012;79:144–9.

    CAS  PubMed  Google Scholar 

  109. Hong SW, Lee HY, Kim KH, Lee SH. Interspinous ligamentoplasty in the treatment of degenerative spondylolisthesis: midterm clinical results. J Neurosurg Spine. 2010;13:27–35.

    Article  PubMed  Google Scholar 

  110. Li ZH, Wang SY, Tang H, Ma H, Zhang QL, Ho UT. Spinal fusion combined with dynamic interspinous fixation with Coflex system for lumbar degenerative disease. Zhongguo Gu Shang. 2011;24:277–81.

    PubMed  Google Scholar 

  111. Zhou SY, Chen XS, Jia LS, Zhu W, Fang L, Cai TY. Short-term clinical results of interspinous dynamic fixation of Coflex for the prevention of adjacent segment degeneration after lumbar fusion. Zhonghua Wai Ke Za Zhi. 2012;50:772–5.

    PubMed  Google Scholar 

  112. DePalma MJ, Ketchum JM, Saullo T. What is the source of chronic low back pain and does age play a role? Pain Med. 2011;12:224–33.

    Article  PubMed  Google Scholar 

  113. Liu HY, Zhou J, Wang B, Wang HM, Jin ZH, Zhu ZQ, Miao KN. Comparison of topping-off and posterior lumbar interbody fusion surgery in lumbar degenerative disease: a retrospective study. Chin Med J (Engl). 2012;125:3942–6.

    Google Scholar 

  114. Richolt JA, Rauschmann MA, Schmidt S. Interspinous spacers–technique of Coflex implantation. Oper Orthop Traumatol. 2010;22:536–44.

    Article  PubMed  Google Scholar 

  115. Richter A, Halm HF, Hauck M, Quante M. 2-year follow-up after decompressive surgery with and without implantation of an interspinous device for lumbar spinal stenosis: a prospective controlled study. J Spinal Disord Tech. 2014;27(6):336–41.

    Google Scholar 

  116. Schizas C, Duff JM, Tessitore E, Faundez A. Non fusion techniques in spinal surgery. Rev Med Suisse. 2009;5:2574–7.

    CAS  PubMed  Google Scholar 

  117. Liu HY, Zhou J, Wang B, Wang HM, Jin ZH, Zhu ZQ, Miao KN. The effect of topping-off surgery on preventing adjacent segment degeneration, a retrospective study. Zhonghua Wai Ke Za Zhi. 2012;50:115–9.

    PubMed  Google Scholar 

  118. Cho KS, Kang SG, Yoo DS, Huh PW, Kim DS, Lee SB. Risk factors and surgical treatment for symptomatic adjacent segment degeneration after lumbar spine fusion. J Korean Neurosurg Soc. 2009;46:425–30.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Cusick JF, Yoganandan N, Pintar FA, Reinartz JM. Biomechanics of sequential posterior lumbar surgical alterations. J Neurosurg. 1992;76:805–11.

    Article  CAS  PubMed  Google Scholar 

  120. Tai CL, Hsieh PH, Chen WP, Chen LH, Chen WJ, Lai PL. Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomy for spinal stenosis syndrome – an experimental study in porcine model. BMC Musculoskelet Disord. 2008;9:84.

    Article  PubMed Central  PubMed  Google Scholar 

  121. Cavanaugh JM, el-Bohy A, Hardy WN, Getchell TV, Getchell ML, King AI. Sensory innervation of soft tissues of the lumbar spine in the rat. J Orthop Res. 1989;7:378–88.

    Article  CAS  PubMed  Google Scholar 

  122. Yahia H, Newman N. A light and electron microscopic study of spinal ligament innervation. Z Mikrosk Anat Forsch. 1989;103:664–74.

    CAS  PubMed  Google Scholar 

  123. Hartmann F, Janssen C, Bohm S, Hely H, Rommens PM, Gercek E. Biomechanical effect of graded minimal-invasive decompression procedures on lumbar spinal stability. Arch Orthop Trauma Surg. 2012;132:1233–9.

    Article  PubMed  Google Scholar 

  124. Marsh GD, Mahir S, Leyte A. A prospective randomised controlled trial to assess the efficacy of dynamic stabilisation of the lumbar spine with the Wallis ligament. Eur Spine J. 2014;23(10):2156–60.

    Google Scholar 

  125. Cabraja M, Abbushi A, Woiciechowsky C, Kroppenstedt S. The short- and mid-term effect of dynamic interspinous distraction in the treatment of recurrent lumbar facet joint pain. Eur Spine J. 2009;18:1686–94.

    Article  PubMed Central  PubMed  Google Scholar 

  126. Park SC, Yoon SH, Hong YP, Kim KJ, Chung SK, Kim HJ. Minimum 2-year follow-up result of degenerative spinal stenosis treated with interspinous u (coflex). J Korean Neurosurg Soc. 2009;46:292–9.

    Article  PubMed Central  PubMed  Google Scholar 

  127. Lee SH, Lee JH, Hong SW, Chung SE, Yoo SH, Lee HY. Spinopelvic alignment after interspinous soft stabilization with a tension band system in grade 1 degenerative lumbar spondylolisthesis. Spine (Phila Pa 1976). 2010;35:E691–701.

    Google Scholar 

  128. Sun HL, Li CD, Liu XY, Yi XD, Lin JR, Liu H, Lu HL, Li H, Yu ZR. Retrospective study of complication of interspinous implants for degenerative lumbar disease. Zhonghua Wai Ke Za Zhi. 2013;51:35–9.

    PubMed  Google Scholar 

  129. Li CD, Sun HL, Liu XY, Lin JR, Yi XD, Liu H, Lu HL. Retrospective study of application of interspinous implants for degenerative lumbar diseases. Zhonghua Yi Xue Za Zhi. 2009;89:3196–200.

    PubMed  Google Scholar 

  130. Maida G, Marcati E, Sarubbo S. Heterotopic ossification in vertebral interlaminar/interspinous instrumentation: report of a case. Case Rep Surg. 2012;2012:970642.

    PubMed Central  PubMed  Google Scholar 

  131. Tian NF, Zhang XL, Wu YS, Jiang LB, Xu HZ, Chi YL. Fusion after interspinous device placement. Orthopedics. 2012;35:e1822–5.

    Article  PubMed  Google Scholar 

  132. Tian NF, Wu AM, Wu LJ, Wu XL, Wu YS, Zhang XL, Xu HZ, Chi YL. Incidence of heterotopic ossification after implantation of interspinous process devices. Neurosurg Focus. 2013;35:E3.

    Article  PubMed  Google Scholar 

  133. Barz T, Lange J, Melloh M, Staub LP, Merk HR, Kloting I, Follak N. Histomorphometric and radiographical changes after lumbar implantation of the PEEK nonfusion interspinous device in the BB.4S rat model. Spine (Phila Pa 1976). 2012;38:E263–9.

    Article  Google Scholar 

  134. Ihm EH, Han IB, Shin DA, Kim TG, Huh R, Chung SS. Spinous process morphometry for interspinous device implantation in Korean patients. World Neurosurg. 2013;79:172–6.

    Article  PubMed  Google Scholar 

  135. Limthongkul W, Yingsakmongkol W. Case report: cauda equina syndrome associated with an interspinous device. Clin Orthop Relat Res. 2012;470:1668–72.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Jerosch J, Moursi MG. Foreign body reaction due to polyethylene’s wear after implantation of an interspinal segment. Arch Orthop Trauma Surg. 2008;128:1–4.

    Article  PubMed  Google Scholar 

  137. Chung KJ, Hwang YS, Koh SH. Stress fracture of bilateral posterior facet after insertion of interspinous implant. Spine (Phila Pa 1976). 2009;34:E380–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Sénégas MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sénégas, J. (2016). A Word from the Inventor of Intervertebral Dynamic Fixation: On Interspinous Devices. In: Pinheiro-Franco, J., Vaccaro, A., Benzel, E., Mayer, H. (eds) Advanced Concepts in Lumbar Degenerative Disk Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47756-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47756-4_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47755-7

  • Online ISBN: 978-3-662-47756-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics