Skip to main content

Lumbar Intervertebral Disk Injury, Herniation and Degeneration

  • Chapter

Abstract

This chapter reviews the mechanical function and failure of lumbar intervertebral discs. Disc herniation is essentially a bending injury to the annulus that can also involve the nucleus and vertebral endplate. Injuries to the annulus and vertebral body endplate create two distinct ‘phenotypes’ of disc degeneration: annulus driven and endplate driven. Either injury alters the mechanical environment of disc cells. Disturbed cell biology can lead to altered matrix composition, further structural disruption, revascularisation, reinnervation and pain. This defines the process of ‘disc degeneration’. A disc’s attempts to repair itself are frustrated by the very low cell density in the nucleus, which itself is attributable to poor metabolite transport. Disc injuries need not be traumatic, because intervertebral discs can be so weakened by genetic inheritance, ageing and loading history that injury occurs during the activities of everyday living. The situation is analogous to vertebral osteoporotic fracture. Medicolegal implications are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haefeli M, Kalberer F, Saegesser D, Nerlich AG, Boos N, Paesold G. The course of macroscopic degeneration in the human lumbar intervertebral disc. Spine. 2006;31:1522–31.

    Article  PubMed  Google Scholar 

  2. Hirsch C, Schajowicz F. Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand. 1953;22:184–231.

    Article  Google Scholar 

  3. Newman PH. Sprung back. J Bone Joint Surg [Br]. 1952;34:30–7.

    Google Scholar 

  4. Nachemson AL. Lumbar intradiscal pressure. Acta Orthop Scand Suppl. 1960;43:1–104.

    Article  CAS  PubMed  Google Scholar 

  5. Osti OL, Vernon-Roberts B, Fraser RD. Volvo award in experimental studies. Anulus tears and intervertebral disc degeneration. Spine. 1990;15:762–7.

    CAS  PubMed  Google Scholar 

  6. Holm S, Holm AK, Ekstrom L, Karladani A, Hansson T. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech. 2004;17:64–71.

    Article  PubMed  Google Scholar 

  7. Ulrich JA, Liebenberg EC, Thuillier DU, Lotz JC. ISSLS prize winner: repeated disc injury causes persistent inflammation. Spine. 2007;32:2812–9.

    Article  PubMed  Google Scholar 

  8. Kerttula LI, Serlo WS, Tervonen OA, Paakko EL, Vanharanta HV. Post-traumatic findings of the spine after earlier vertebral fracture in young patients: clinical and MRI study. Spine. 2000;25:1104–8.

    Article  CAS  PubMed  Google Scholar 

  9. Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R. ISSLS prize winner: does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine. 2009;34:2338–45.

    Article  PubMed  Google Scholar 

  10. Kelsey JL, Githens PB, White AA, Holford TR, Walter SD, O’Connor T, Ostfeld AM, Weil U, Southwick WO, Calogero JA. An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res. 1984;2:61–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sward L, Hellstrom M, Jacobsson B, Nyman R, Peterson L. Disc degeneration and associated abnormalities of the spine in elite gymnasts. A magnetic resonance imaging study. Spine. 1991;16:437–43.

    Article  CAS  PubMed  Google Scholar 

  12. Seidler A, Bolm-Audorff U, Siol T, Henkel N, Fuchs C, Schug H, Leheta F, Marquardt G, Schmitt E, Ulrich PT, Beck W, Missalla A, Elsner G. Occupational risk factors for symptomatic lumbar disc herniation; a case-control study. Occup Environ Med. 2003;60:821–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Adams MA, Dolan P. Could sudden increases in physical activity cause degeneration of intervertebral discs? Lancet. 1997;350:734–5.

    Article  CAS  PubMed  Google Scholar 

  14. Videman T, Gibbons LE, Kaprio J, Battie MC. Challenging the cumulative injury model: positive effects of greater body mass on disc degeneration. Spine J. 2010;10:26–31.

    Article  PubMed  Google Scholar 

  15. Adams M, Bogduk N, Burton K, Dolan P. The biomechanics of back pain. 3rd ed. Edinburgh: Churchill Livingstone; 2013.

    Google Scholar 

  16. Kawaguchi Y, Osada R, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T. Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine. 1999;24:2456–60.

    Article  CAS  PubMed  Google Scholar 

  17. Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, Tsunoda T, Kamata M, Kubo T, Toyama Y, Kimura T, Nakamura Y, Ikegawa S. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet. 2005;37:607–12.

    Article  CAS  PubMed  Google Scholar 

  18. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M. Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine. 1998;23:2477–85.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ, Majumdar S, Lotz JC. Human disc nucleus properties and vertebral endplate permeability. Spine. 2011;36:512–20.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Pollintine P, Przybyla AS, Dolan P, Adams MA. Neural arch load-bearing in old and degenerated spines. J Biomech. 2004;37:197–204.

    Article  CAS  PubMed  Google Scholar 

  21. Skrzypiec DM, Bishop NE, Klein A, Püschel K, Morlock MM, Huber G. Estimation of shear load sharing in moderately degenerated human lumbar spine. J Biomech. 2013;46:651–7.

    Article  PubMed  Google Scholar 

  22. Adams MA, Hutton WC, Stott JR. The resistance to flexion of the lumbar intervertebral joint. Spine. 1980;5:245–53.

    Article  CAS  PubMed  Google Scholar 

  23. Adams MA, Dolan P, Hutton WC. The lumbar spine in backward bending. Spine. 1988;13:1019–26.

    Article  CAS  PubMed  Google Scholar 

  24. Adams MA, Hutton WC. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine. 1981;6:241–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine. 1999;24:2468–74.

    Article  CAS  PubMed  Google Scholar 

  26. Dolan P, Earley M, Adams MA. Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech. 1994;27:1237–48.

    Article  CAS  PubMed  Google Scholar 

  27. Mannion AF, Adams MA, Dolan P. Sudden and unexpected loading generates high forces on the lumbar spine. Spine. 2000;25:842–52.

    Article  CAS  PubMed  Google Scholar 

  28. Vascancelos D. Compression fractures of the vertebra during major epileptic seizures. Epilepsia. 1973;14:323–8.

    Article  Google Scholar 

  29. Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech. 1989;4 Suppl 2:1–27.

    Google Scholar 

  30. Brinckmann P, Frobin W, Hierholzer E, Horst M. Deformation of the vertebral end-plate under axial loading of the spine. Spine. 1983;8:851–6.

    Article  CAS  PubMed  Google Scholar 

  31. Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Spine. 1989;14:606–10.

    Article  CAS  PubMed  Google Scholar 

  32. Adams MA, Dolan P. Biomechanics of vertebral compression fractures and clinical application. Arch Orthop Trauma Surg. 2011;131:1703–10.

    Article  PubMed  Google Scholar 

  33. Brinckmann P, Biggemann M, Hilweg D. Fatigue fracture of human lumbar vertebrae. Clin Biomech. 1988;3 Suppl 1:11–8.

    Google Scholar 

  34. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone. 2009;44:372–9.

    Article  PubMed  Google Scholar 

  35. Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 2004;37:213–21.

    Article  PubMed  Google Scholar 

  36. Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H. The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am. 1970;52:468–97.

    CAS  PubMed  Google Scholar 

  37. Adams MA, Hutton WC. The mechanical function of the lumbar apophyseal joints. Spine. 1983;8:327–30.

    Article  CAS  PubMed  Google Scholar 

  38. Adams MA, Hutton WC. Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in basic science. Spine. 1982;7:184–91.

    Article  CAS  PubMed  Google Scholar 

  39. Adams MA, Hutton WC. The effect of posture on diffusion into lumbar intervertebral discs. J Anat. 1986;147:121–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P. Mechanical initiation of intervertebral disc degeneration. Spine. 2000;25:1625–36.

    Article  CAS  PubMed  Google Scholar 

  41. Adams MA, McNally DS, Dolan P. ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br. 1996;78:965–72.

    Article  CAS  PubMed  Google Scholar 

  42. Adams MA, Dolan P, Hutton WC. Diurnal variations in the stresses on the lumbar spine. Spine. 1987;12:130–7.

    Article  CAS  PubMed  Google Scholar 

  43. Veres SP, Robertson PA, Broom ND. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus: part II: how the annulus fails under hydrostatic pressure. Spine. 2008;33:2711–20.

    Article  PubMed  Google Scholar 

  44. Veres SP, Robertson PA, Broom ND. The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Spine. 2009;34:2288–96.

    Article  PubMed  Google Scholar 

  45. Adams MA, Hutton WC. Gradual disc prolapse. Spine. 1985;10:524–31.

    Article  CAS  PubMed  Google Scholar 

  46. Adams MA, McMillan DW, Green TP, Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine. 1996;21:434–8.

    Article  CAS  PubMed  Google Scholar 

  47. Tampier C, Drake JD, Callaghan JP, McGill SM. Progressive disc herniation: an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model. Spine. 2007;32:2869–74.

    Article  PubMed  Google Scholar 

  48. Yates JP, Giangregorio L, McGill SM. The influence of intervertebral disc shape on the pathway of posterior/posterolateral partial herniation. Spine. 2010;35:734–9.

    Article  PubMed  Google Scholar 

  49. Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M. The origin and fate of herniated lumbar intervertebral disc tissue. Spine. 1996;21:2149–55.

    Article  CAS  PubMed  Google Scholar 

  50. Willburger RE, Ehiosun UK, Kuhnen C, Kramer J, Schmid G. Clinical symptoms in lumbar disc herniations and their correlation to the histological composition of the extruded disc material. Spine. 2004;29:1655–61.

    Article  PubMed  Google Scholar 

  51. Lama P, Zehra U, Balkovec C, Claireaux H, Flower L, Harding IJ, Dolan P, Adams MA. Significance of cartilage endplate within herniated disc tissue. Eur Spine J (submitted for publication) 2014;23:1869–77.

    Google Scholar 

  52. Summers GC, Merrill A, Sharif M, Adams MA. Swelling of articular cartilage depends on the integrity of adjacent cartilage and bone. Biorheology. 2008;45:365–74.

    PubMed  Google Scholar 

  53. Rodrigues SA, Wade KR, Thambyah A, Broom ND. Micromechanics of annulus-end plate integration in the intervertebral disc. Spine J. 2012;12:143–50.

    Article  PubMed  Google Scholar 

  54. Wade KR, Robertson PA, Broom ND. On how nucleus-endplate integration is achieved at the fibrillar level in the ovine lumbar disc. J Anat. 2012;221:39–46.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP. ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine. 2013;38:1491–500.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Videman T, Battie MC. ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine. 2012;37:1490–6.

    Article  PubMed  Google Scholar 

  57. Fields AJ, Liebenberg EC, Lotz JC. Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J. 2013;3:153–64.

    Google Scholar 

  58. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, Norgaard HS, Vernallis A, Busch F, Manniche C, Elliott T. Does nuclear tissue infected with bacteria following disc herniations lead to modic changes in the adjacent vertebrae? Eur Spine J. 2013;22:690–6.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 2013;22:697–707.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone. 2007;40:1110–9.

    Article  CAS  PubMed  Google Scholar 

  61. Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA. Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine. 2013;38:1473–81.

    Article  PubMed  Google Scholar 

  62. Przybyla A, Pollintine P, Bedzinski R, Adams MA. Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: relevance to disc degeneration. Clin Biomech. 2006;21:1013–9.

    Article  Google Scholar 

  63. Dolan P, Adams MA, Hutton WC. The short-term effects of chymopapain on intervertebral discs. J Bone Joint Surg [Br]. 1987;69:422–8.

    CAS  Google Scholar 

  64. Ranu HS. Multipoint determination of pressure-volume curves in human intervertebral discs. Ann Rheum Dis. 1993;52:142–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Heuer F, Schmidt H, Wilke HJ. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J Biomech. 2008;41:1953–60.

    Article  PubMed  Google Scholar 

  66. O’Connell GD, Malhotra NR, Vresilovic EJ, Elliott DM. The effect of nucleotomy and the dependence of degeneration of human intervertebral disc strain in axial compression. Spine. 2011;36:1765–71.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS. Discs degenerate before facets. Spine. 1990;15:111–3.

    Article  CAS  PubMed  Google Scholar 

  68. Tischer T, Aktas T, Milz S, Putz RV. Detailed pathological changes of human lumbar facet joints L1–L5 in elderly individuals. Eur Spine J. 2006;15:308–15.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Robson-Brown K, Pollintine P, Adams MA. Biomechanical implications of degenerative joint disease in the apophyseal joints of human thoracic and lumbar vertebrae. Am J Phys Anthropol. 2008;136:318–26.

    Article  Google Scholar 

  70. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA. Discogenic origins of spinal instability. Spine. 2005;30:2621–30.

    Article  PubMed  Google Scholar 

  71. Al-Rawahi M, Luo J, Pollintine P, Dolan P, Adams MA. Mechanical function of vertebral body osteophytes, as revealed by experiments on cadaveric spines. Spine. 2011;36:770–7.

    Article  PubMed  Google Scholar 

  72. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 1996;98:996–1003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Schollmeier G, Lahr-Eigen R, Lewandrowski K-U. Observations on fiber-forming collagens in the anulus fibrosus. Spine. 2000;25:2736–41.

    Article  CAS  PubMed  Google Scholar 

  74. DeGroot J, Verzijl N, Wenting-Van Wijk MJ, Jacobs KM, Van El B, Van Roermund PM, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum. 2004;50:1207–15.

    Article  CAS  PubMed  Google Scholar 

  75. Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther. 2007;9:R45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, Degroot J, Roberts S, Maroudas A. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem. 2008;283:8796–801.

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC. Morphology of the human vertebral endplate. J Orthop Res. 2012;30:280–7.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Adams MA, Lama P, Zehra U, D P. Why do some intervertebral discs degenerate, when others (in the same spine) do not? J Clin Anat. 2015;28(2):195–204.

    Google Scholar 

  79. Palmgren T, Gronblad M, Virri J, Kaapa E, Karaharju E. An immunohistochemical study of nerve structures in the anulus fibrosus of human normal lumbar intervertebral discs. Spine. 1999;24:2075–9.

    Article  CAS  PubMed  Google Scholar 

  80. Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg [Br]. 1986;68:36–41.

    CAS  Google Scholar 

  81. Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine. 1990;15:411–5.

    Article  CAS  PubMed  Google Scholar 

  82. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–8.

    Article  CAS  PubMed  Google Scholar 

  83. Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine. 2009;34:934–40.

    Article  PubMed  Google Scholar 

  84. de Schepper EI, Damen J, van Meurs JB, Ginai AZ, Popham M, Hofman A, Koes BW, Bierma-Zeinstra SM. The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features. Spine. 2010;35:531–6.

    Article  PubMed  Google Scholar 

  85. Stefanakis M, Luo J, Pollintine P, Dolan P, Adams MA. ISSLS prize winner: mechanical influences in progressive intervertebral disc degeneration. Spine. 2014;39(17):1365–72.

    Google Scholar 

  86. Kettler A, Rohlmann F, Ring C, Mack C, Wilke HJ. Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. Eur Spine J. 2011;20:578–84.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–61.

    Article  PubMed  Google Scholar 

  88. Ishihara H, McNally DS, Urban JP, Hall AC. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol. 1996;80:839–46.

    CAS  PubMed  Google Scholar 

  89. Adams MA, Dolan P, McNally DS. The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol. 2009;28:384–9.

    Article  CAS  PubMed  Google Scholar 

  90. Shamji MF, Setton LA, Jarvis W, So S, Chen J, Jing L, Bullock R, Isaacs RE, Brown C, Richardson WJ. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010;62:1974–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N. SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J. 2002;11:308–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Lama P, Le Maitre CL, Dolan P, Tarlton JF, Harding IJ, Adams MA. Do intervertebral discs degenerate before they herniate, or after? Bone Joint J. 2013;95-B:1127–33.

    Article  CAS  PubMed  Google Scholar 

  93. Adams MA, Dolan P. Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat. 2012;221:497–506.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Hassett G, Hart DJ, Manek NJ, Doyle DV, Spector TD. Risk factors for progression of lumbar spine disc degeneration: the Chingford Study. Arthritis Rheum. 2003;48:3112–7.

    Article  CAS  PubMed  Google Scholar 

  95. Olmarker K. Puncture of a lumbar intervertebral disc induces changes in spontaneous pain behavior: an experimental study in rats. Spine. 2008;33:850–5.

    Article  PubMed  Google Scholar 

  96. Peng B, Wu W, Hou S, Li P, Zhang C, Yang Y. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br. 2005;87:62–7.

    CAS  PubMed  Google Scholar 

  97. Stefanakis M, Al-Abbasi M, Harding I, Pollintine P, Dolan P, Tarlton J, Adams MA. Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine (Phila Pa 1976). 2012;37:1883–91.

    Article  Google Scholar 

  98. Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S. Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum. 2002;46:2658–64.

    Article  CAS  PubMed  Google Scholar 

  99. Johnson WE, Caterson B, Eisenstein SM, Roberts S. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine. 2005;30:1139–47.

    Article  PubMed  Google Scholar 

  100. Fields AJ, Liebenberg EC, Lotz JC. Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J. 2014;14:513–21.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Liebscher T, Haefeli M, Wuertz K, Nerlich AG, Boos N. Age-related variation in cell density of human lumbar intervertebral disc. Spine. 2011;36:153–9.

    Article  PubMed  Google Scholar 

  102. Bibby SR, Jones DA, Ripley RM, Urban JP. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine. 2005;30:487–96.

    Article  PubMed  Google Scholar 

  103. Skrzypiec D, Tarala M, Pollintine P, Dolan P, Adams MA. When are intervertebral discs stronger than their adjacent vertebrae? Spine. 2007;32:2455–61.

    Article  PubMed  Google Scholar 

  104. Hastreiter D, Ozuna RM, Spector M. Regional variations in certain cellular characteristics in human lumbar intervertebral discs, including the presence of alpha-smooth muscle actin. J Orthop Res. 2001;19:597–604.

    Article  CAS  PubMed  Google Scholar 

  105. Rumian AP, Draper ER, Wallace AL, Goodship AE. The influence of the mechanical environment on remodelling of the patellar tendon. J Bone Joint Surg Br. 2009;91:557–64.

    Article  CAS  PubMed  Google Scholar 

  106. Goodship AE, Lanyon LE, McFie H. Functional adaptation of bone to increased stress. An experimental study. J Bone Joint Surg Am. 1979;61:539–46.

    CAS  PubMed  Google Scholar 

  107. Yoganandan N, Ray G, Pintar FA, Myklebust JB, Sances Jr A. Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint [see comments]. J Biomech. 1989;22:135–42.

    Article  CAS  PubMed  Google Scholar 

  108. Screen HR, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H. 2004;218:109–19.

    Article  CAS  PubMed  Google Scholar 

  109. Kerin AJ, Wisnom MR, Adams MA. The compressive strength of articular cartilage. Proc Inst Mech Eng H. 1998;212:273–80.

    Article  CAS  PubMed  Google Scholar 

  110. Melton 3rd LJ. Epidemiology of spinal osteoporosis. Spine. 1997;22:2S–11.

    Article  PubMed  Google Scholar 

  111. Green TP, Adams MA, Dolan P. Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur Spine J. 1993;2:209–14.

    Article  CAS  PubMed  Google Scholar 

  112. Battie MC, Videman T, Levalahti E, Gill K, Kaprio J. Genetic and environmental effects on disc degeneration by phenotype and spinal level: a multivariate twin study. Spine. 2008;33:2801–8.

    Article  PubMed  Google Scholar 

  113. MacGregor AJ, Andrew T, Sambrook PN, Spector TD. Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum. 2004;51:160–7.

    Article  PubMed  Google Scholar 

  114. Miller JA, Schmatz C, Schultz AB. Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine. 1988;13:173–8.

    Article  CAS  PubMed  Google Scholar 

  115. Adams MA. Mechanical influences in disc degeneration and prolapse: medico-legal relevance. Bone Joint J. 2014;3(2):32–5.

    Google Scholar 

  116. Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15:402–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Adams BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adams, M.A., Dolan, P. (2016). Lumbar Intervertebral Disk Injury, Herniation and Degeneration. In: Pinheiro-Franco, J., Vaccaro, A., Benzel, E., Mayer, H. (eds) Advanced Concepts in Lumbar Degenerative Disk Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47756-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47756-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47755-7

  • Online ISBN: 978-3-662-47756-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics