Advertisement

Aircraft Autonomy

  • Piero MiottoEmail author
  • Leena Singh
  • James D. Paduano
  • Andrew Clare
  • Mary L. Cummings
  • Lesley A. Weitz
Chapter
  • 1.3k Downloads
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 460)

Abstract

The word automatic is a compound of the Greek words auto.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Schedule Algorithm Automatic Teller Machine Federal Aviation Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    At 75, America’s air traffic control system keeps getting better. http://fastlane.dot.gov/2011/07/air-traffic-control-at-75.html (2011)
  2. 2.
    Alighanbari, M., How, J.: Robust decentralized task assignment for cooperative UAVs. In: AIAA Conference on Guidance, Navigation, and Control Conference, Keystone, CO, pp. 21–24 (2006)Google Scholar
  3. 3.
    Anderson, D., Anderson, E., Lesh, N., Marks, J., Mirtich, B., Ratajczak, D., Ryall, K.: Human-guided simple search. In: AAAI/IAAI, pp. 209–216 (2000)Google Scholar
  4. 4.
    Atkins, E.M.: The benefits and risks of increased autonomy in air and space systems. In: 9th German-American Frontiers of Engineering Symposium (2006)Google Scholar
  5. 5.
    Atkins, E.M.: Intelligent systems for unmanned aircraft safety certification. In: AIAA Aerospace Sciences Meeting, Nashville, TN (2012)Google Scholar
  6. 6.
    Balaskrishna, M., Becher, T., MacWilliams, P., Klooster, J., Kuiper, W., Smith, P.: Seattle required time of arrival flight trials. In: Proceedings of the 30th Digital Avionics Systems Conference, Seattle, WA, p. 2D4-1 (2011)Google Scholar
  7. 7.
    BEA: Final Report: On the accident on 1st June 2009 to the Airbus A330–203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro-Paris. Technical report, Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile (2012)Google Scholar
  8. 8.
    Bellingham, J., Richards, A., How, J.P.: Receding horizon control of autonomous aerial vehicles. In: American Control Conference, 2002. Proceedings of the 2002, vol. 5, pp. 3741–3746. IEEE (2002)Google Scholar
  9. 9.
    Bertuccelli, L., Beckers, N., Cummings, M.L.: Developing operator models for UAV search scheduling. In: AIAA Conference on Guidance Navigation, and Control Conference, Toronto, Canada (2010)Google Scholar
  10. 10.
    Bertuccelli, L.F., Choi, H.L., Cho, P., How, J.: Real-time multi-UAV task assignment in dynamic and uncertain environments. In: AIAA Conference on Guidance, Navigation, and Control, Chicago, IL (2009)Google Scholar
  11. 11.
    Bisantz, A.M., Cao, D., Jenkins, M., Pennathur, P.R., Farry, M., Roth, E., Potter, S.S., Pfautz, J.: Comparing uncertainty visualizations for a dynamic decision-making task. J. Cogn. Eng. Decis. Mak. 5(3), 277–293 (2011)CrossRefGoogle Scholar
  12. 12.
    Blanchard, B.S., Fabrycky, W.J.: Systems Engineering and Analysis, 3rd edn. Prentice Hall, Upper Saddle River (1998)Google Scholar
  13. 13.
    Bone, R.: Cockpit display of traffic information (CDTI) assisted visual separation (CAVS): Pilot acceptability of a spacing task during a visual approach. In: Proceedings of the 6th USA/Europe Air Traffic Management Research and Development Seminar, Baltimore, MD, vol. 122 (2005)Google Scholar
  14. 14.
    Butterworth-Hayes, P.: Conversations with Patrick Ky. Aerosp. Am. (2012)Google Scholar
  15. 15.
    Butterworth-Hayes, P.: A long road for UAS integration in Europe. Aerosp. Am. (2012)Google Scholar
  16. 16.
    Casbeer, D.W., Kingston, D.B., Beard, A.W., Mclain, T.W., Li, S.M., Mehra, R.: Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci. 37, 360 (2006)Google Scholar
  17. 17.
    Caves, A.: Human-automation collaborative RRT for UAV mission path planning. Technical report, Massachusetts Institute of Technology (2010)Google Scholar
  18. 18.
    Chan, D.S.K., Brooksby, G.W., Hochwarth, J., Klooster, J.K., Torres, S.: Air-ground trajectory synchronization? metrics and simulation results. In: Proceedings of the 30th Digital Avionics Systems Conference, Seattle, WA (2011)Google Scholar
  19. 19.
    Clare, A.S., Cummings, M.L., Bertuccelli, L.F.: Identifying suitable algorithms for human-computer collaborative scheduling of multiple unmanned vehicles. In: AIAA Aerospace Sciences Meeting (2012)Google Scholar
  20. 20.
    Clare, A.S., Cummings, M.L., How, J.P., Whitten, A.K., Toupet, O.: Operator object function guidance for a real-time unmanned vehicle scheduling algorithm. J. Aerosp. Comput. Inf. Commun. 9(4), 161–173 (2012)CrossRefGoogle Scholar
  21. 21.
    Clare, A.S., Macbeth, J.C., Cummings, M.L.: Mixed-initiative strategies for real-time scheduling of multiple unmanned vehicles. In: American Control Conference, 2012. Proceedings of the 2012, pp. 676–682. IEEE (2012)Google Scholar
  22. 22.
    Coppenbarger, R., Dyer, G., Hayashi, M., Lanier, R., Stell, L., Sweet, D.: Development and testing for efficient arrivals in constrained airspace. In: Proceedings of the 27th International Council of the Aeronautical Sciences, Nice, France (2010)Google Scholar
  23. 23.
    Cummings, M.L., Bruni, S.: Collaborative human-automation decision making. In: Handbook of Automation LXXVI, pp. 437–448. Springer (2009)Google Scholar
  24. 24.
    Cummings, M.L., Bruni, S., Mercier, S., Mitchell, P.J.: Automation architecture for single operator, multiple UAV command and control. Int. Command. Control. J. 1(2), 1–24 (2007)Google Scholar
  25. 25.
    Cummings, M.L., Clare, A.S., Hart, C.S.: The role of human-automation consensus in multiple unmanned vehicle scheduling. Hum. Factors 52(1), 17–27 (2010)CrossRefGoogle Scholar
  26. 26.
    Cummings, M.L., How, J., Whitten, A., Toupet, O.: The impact of human-automation collaboration in decentralized multiple unmanned vehicle control. Proc. IEEE 100(3), 660–671 (2012)CrossRefGoogle Scholar
  27. 27.
    Cummings, M.L., Thornburg, K.T.: Paying attention to the man behind the curtain. IEEE Pervasive Comput. 10(1), 58–62 (2011)CrossRefGoogle Scholar
  28. 28.
    DoD: Unmanned aircraft systems (UAS) roadmap, 2005–2030. Technical report, Office of the Secretary of Defense (2005)Google Scholar
  29. 29.
    DoD: Unmanned aircraft systems roadmap 2011–2036. Technical report, Office of the Secretary of Defense (2011)Google Scholar
  30. 30.
    Domino, D.A., Tuomey, D., Mundra, A., Smith, A.: Air ground collaboration through delegated separation: Application for departures and arrivals. In: Integrated Communications Navigation and Surveillance Conference (ICNS), 2010, pp. G5–1. IEEE (2010)Google Scholar
  31. 31.
    Federal Aviation Administration: Concept of use for time-based flow management (TBFM). Technical report, United States Department of Transportation (2009)Google Scholar
  32. 32.
    Federal Aviation Administration: Airworthiness approval of automation dependent surveillance-broadcast (ADS-B) out systems (advisory circular 20–165). Technical report, United States Department of Transportation (2010)Google Scholar
  33. 33.
    Federal Aviation Administration: FAA aerospace forecast: Fiscal years 2011–2031. Technical report, United States Department of Transportation (2011)Google Scholar
  34. 34.
    Federal Aviation Administration: Flight trials assessment for 4 dimensional flight management system trajectory based operations. Technical report, United States Department of Transportation (2011)Google Scholar
  35. 35.
    Federal Aviation Administration: Arrival interval management—spacing (IM-s) concept of operations for the mid-term timeframe, version 3. Technical report, United States Department of Transportation (2012)Google Scholar
  36. 36.
    Finnegan, P.: UAV sector faces sweeping changes. Aerosp. Am. (2012)Google Scholar
  37. 37.
    Forest, L.M., Kahn, A., Thomer, J., Shapiro, M.: The design and evaluation of human-guided algorithms for mission planning. In: Human Systems Integration Symposium (2007)Google Scholar
  38. 38.
    Gao, J., Lee, J.D.: Extending the decision field theory to model operators? reliance on automation in supervisory control situations. IEEE Trans. Syst. Man and Cybern.—Part A: Syst. Hum. 36(5), 943–959 (2006)CrossRefGoogle Scholar
  39. 39.
    Girard, A.R., Hedrick, J.K.: Border patrol and surveillance missions using multiple unmanned air vehicles. In: Proceedings of the IEEE Conference on Decision and Control (2004)Google Scholar
  40. 40.
    Guerlain, S.A.: Using the critiquing approach to cope with brittle expert systems. In: Human Factors and Ergonomics Society 39th Annual Meeting (1995)Google Scholar
  41. 41.
    Choi, H.-L.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)CrossRefGoogle Scholar
  42. 42.
    Haddal, C.C., Gertler, J.: Homeland security: Unmanned aerial vehicles and border surveillance. Technical report, Congressional Research Service (2010)Google Scholar
  43. 43.
    Hanson, M.L., Roth, E., Hopkins, C.M., Mancuso, V.: Developing mixed-initiative interaction with intelligent systems: Lessons learned from supervising multiple UAVs. In: AIAA 1st Intelligent Systems Technical Conference (2004)Google Scholar
  44. 44.
    How, J.P., Fraser, C., Kulling, K.C., Bertuccelli, L.F., Toupet, O., Brunet, L., Bachrach, A., Roy, N.: Increasing autonomy of UAVs. IEEE Robot. Autom. Mag. 16(2), 43–51 (2009)CrossRefGoogle Scholar
  45. 45.
    Johnson, K., Ren, L., Kuchar, J.K., Oman, C.M.: Interaction of automation and time pressure in a route replanning task, In: International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero) (2002)Google Scholar
  46. 46.
    Keller, J.: Air Force looks for machine autonomy to enable UAVs and piloted aircraft to work and play well together. Mil. Aerosp. Electron. (2010)Google Scholar
  47. 47.
    Layton, C., Smith, P.J., McCoy, C.E.: Design of a cooperative problem-solving system for en-route flight planning—an empirical evaluation. Hum. Factors 36(1), 94–116 (1994)Google Scholar
  48. 48.
    Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors 46(1), 50–80 (2004)CrossRefGoogle Scholar
  49. 49.
    Malasky, J., Forest, L.M., Kahn, A.C., Key, J.R.: Experimental evaluation of human-machine collaborative algorithms in planning for multiple UAVs. In: Systems, Man and Cybernetics, 2005 IEEE International Conference on, vol. 3, pp. 2469–2475. IEEE (2005)Google Scholar
  50. 50.
    Marquez, J.J.: Human-automation collaboration: decision support for lunar and planetary exploration. Technical report, Massachusetts Institute of Technology (2007)Google Scholar
  51. 51.
    Miller, C., Funk, H., Wu, P., Goldman, R., Meisner, J., Chapman, M.: The playbook approach to adaptive automation. In: Human Factors and Ergonomics Society 49th Annual Meeting (2005)Google Scholar
  52. 52.
    Mundra, A., Cooper, W., Smith, A., Audenaerd, L., Lunsford, C.: Potential benefits of a paired approach procedure to closely spacing parallel runways in instrument and marginal visual conditions. In: Proceedings of the 27th Digital Avionics Systems Conference, St Paul, MN (2008)Google Scholar
  53. 53.
    National Research Council: Autonomy Research for Civil Aviation: Toward a New Era of Flight. The National Academies Press, Washington (2014)Google Scholar
  54. 54.
    National Safety Board: Autonomous vehicles in support of naval operations. Technical report, National Research Council (2005)Google Scholar
  55. 55.
    Norris, J., Powell, M., Vona, M., Backes, P., Wick, J.: Mars exploration rover operations with the science activity planner. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4618–4623 (2005)Google Scholar
  56. 56.
    Odedra, S., Prior, S.D., Karamanoglu, M.: Investigating the mobility of unmanned ground vehicles. In: International Conference on Manufacturing and Engineering Systems (2009)Google Scholar
  57. 57.
    Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors: J. Hum. Factors Ergon. Soc. 39(2), 230–253 (1997)CrossRefGoogle Scholar
  58. 58.
    Polson, P., Smith, N.: The cockpit cognitive walkthrough. In: 10th Symposium on Aviation Psychology (1999)Google Scholar
  59. 59.
    Ponda, S., Ahmed, N., Luders, B., Sample, E., Hoossainy, T., Shah, D., Campbell, M., How, J.: Decentralized information-rich planning and hybrid sensor fusion for uncertainty reduction in human-robot missions. In: AIAA Conf. on Guidance, Navigation, and Control, Portland, OR, pp. 8–11 (2011)Google Scholar
  60. 60.
    Rediess, H.A., Garg, S.: Autonomous civil aircraft—the future of aviation? Aerosp. Am. (2006)Google Scholar
  61. 61.
    Ross, P.E.: When will we have unmanned commercial airliners?. IEEE Spectr. (2011)Google Scholar
  62. 62.
    RTCA: Safety Performance, and Interoperability Requirements Document for Airborne Spacing—Flight-Deck Interval Management (ASPA-FIM). RTCA, Washington (2011)Google Scholar
  63. 63.
    Ryan, J.C.: Assessing the performance of human-automation collaborative planning systems. Technical report, Massachusetts Institute of Technology (2011)Google Scholar
  64. 64.
    Scott, S.D., Lesh, N., Klau, G.W.: Investigating human-computer optimization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’02, pp. 155–162. ACM, New York, NY, USA (2002)Google Scholar
  65. 65.
    Sheridan, T.B.: Next generation air transportation systems: Human-automation interaction and organizational risks. In: Proceedings of the Resilience Engineering Symposium, Antibes-Juan-Les-Pins, France (2008)Google Scholar
  66. 66.
    Silverman, B.G.: Human-computer collaboration. Hum.-Comput. Interact. 7(2), 165–196 (1992)CrossRefGoogle Scholar
  67. 67.
    Smith, P., McCoy, E., Layton, C.: Brittleness in the design of cooperative problem-solving systems: the effects on user performance. IEEE Trans. Syst. Man, and Cybern.—Part A, Syst. Hum. 27(3), 360–371 (1997)CrossRefGoogle Scholar
  68. 68.
    Sweeten, B.C., Royer, D., Keshmiri, S.: Meridian UAV flight perfomance anlaysis using analytical and experimental data. In: AIAA Infotech@Aerospace Conference, Seattle, WA, vol. 1899 (2009)Google Scholar
  69. 69.
    Thorner, J.L.: Trust-based design of human-guided algorithms. Technical report, Massachusetts Institute of Technology (2007)Google Scholar
  70. 70.
    Walter, R.: Chapter 15: Flight Management Systems, Chap. 15, pp. 1–25. CRC Press, Boca Raton (2001)Google Scholar
  71. 71.
    Webster, M., Cameron, N., Jump, M., Fisher, M.: Towards certification of autonomous unmanned aircraft using formal model checking and simulation. In: AIAA Infotech@Aerospace Conference, Garden Grove, CA (2012)Google Scholar
  72. 72.
    Weibel, R.E., Hansman, R.J.: An integrated approach to evaluating risk mitigation measures for UAV operational concepts in the NAS. In: AIAA Infotech@Aerospace Conference, Arlington, VA (2005)Google Scholar
  73. 73.
    Weitz, L.A., Hurtado, J.E.: String stability analysis of selected speed control laws for interval management. In: AIAA Conference on Guidance, Navigation, and Control, Minneapolis, MN (2012)Google Scholar
  74. 74.
    Weitz, L.A., Katkin, R., Moertl, P., Penhallegon, W.J., Hammer, J.B., Bone, R.S., Peterson, T.: Considerations for interval management operations in a mixed-equipage environment. In: Proceedings of the AIAA Aviation Technology, Integration, and Operations Conference, Indianapolis, IN (2012)Google Scholar
  75. 75.
    Westwood, J.: Global prospects for AUVs. In: Offshore Technology Conference (2001)Google Scholar
  76. 76.
    Whitten, A.K.: Decentralized planning for autonomous agents cooperating in complex missions. Technical report, Massachusetts Institute of Technology (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Piero Miotto
    • 1
    Email author
  • Leena Singh
    • 1
  • James D. Paduano
    • 2
  • Andrew Clare
    • 3
  • Mary L. Cummings
    • 4
  • Lesley A. Weitz
    • 5
  1. 1.Draper LaboratoryCambridgeUSA
  2. 2.Aurora Flight SciencesCambridgeUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA
  4. 4.Duke University MEMSDurhamUSA
  5. 5.Mitre Corporation CAASDNew JerseyUSA

Personalised recommendations