New Guidance, Navigation, and Control Technologies for Formation Flying Spacecraft and Planetary Landing

  • Fred Y. HadaeghEmail author
  • Andrew E. Johnson
  • David S. Bayard
  • Behçet Açıkmeşe
  • Soon-Jo Chung
  • Raman K. Mehra
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 460)


This chapter describes recent advancements in the areas of guidance, navigation, and control of distributed spacecraft systems or spacecraft formation flying of swarms of 100-gram class spacecraft and planetary landing. A review of advances in perception technologies for on-board hazard detection and terrain relative navigation is presented. The second part of this chapter is devoted to the discussion of innovative research on spacecraft swarms. Spacecraft swarms, comprised of hundreds to thousands of small spacecraft will push the frontier of the existing formation flying concepts by maximizing the benefits of distributed spacecraft systems. Novel control strategies of handling such a large spacecraft network are presented by employing synchronization control on adaptive graphs and probabilistic swarm guidance strategies. Furthermore, new filtering techniques that enable tracking of a large number of space objects are discussed.


Field Programmable Gate Array Lunar Reconnaissance Orbiter Mars Science Laboratory Collision Satellite Collision Detection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The following people are thanked for their contributions: Saptarshi Bandyopadhyay and Daniel Morgan at UIUC; Milan Mandic at JPL; and Adel El-Fallah and Aleksandar Zatezalo at SSCI.


  1. 1.
    Acikmese, B., Bayard, D.: A markov chain approach to probabilistic swarm guidance. Am. Control Conf. (ACC) 2012, 6300–6307 (2012). doi: 10.1109/ACC.2012.6314729 Google Scholar
  2. 2.
    Acikmese, B., Bayard, D.S.: Probabilistic guidance for swarms of autonomous agents. Technical Report D-73778, Jet Propulsion Laboratory, JPL (2012)Google Scholar
  3. 3.
    Adams, D., Criss, T., Shankar, U.: Passive optical terrain relative navigation using aplnav. In: Aerospace Conference, 2008 IEEE, pp. 1–9 (2008). doi: 10.1109/AERO.2008.4526303
  4. 4.
    Amzajerdian, F., Pierrottet, D., Petway, L., Hines, G., Roback, V.: Lidar systems for precision navigation and safe landing on planetary bodies. In: Proceedings of the SPIE, vol. 8192, pp. 819, 202–819 ,202–207 (2011). doi: 10.1117/12.904062.
  5. 5.
    An Introduction to the Mathematics and Methods of Astrodynamics. AIAA education series. American Institute of Aeronautics and Astronautics, Reston (1999).
  6. 6.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chang, I., Chung, S.J., Blackmore, L.: Cooperative control with adaptive graph laplacians for spacecraft formation flying. In: Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 4926–4933 (2010). doi: 10.1109/CDC.2010.5717516
  8. 8.
    Cheng, Y., Clouse, D., Johnson, A., Owen, W., Vaughan, A.: Evaluation and improvement of passive optical terrain relative navigation algorithms for pin-point landing. In: AAS Space Flight Mechanics Meeting (AAS-SFM 2011) (2011)Google Scholar
  9. 9.
    Chung, S.J., Ahsun, U., jacques, E., Slotine, J.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32(2), 512–526 (2009)CrossRefGoogle Scholar
  10. 10.
    Chung, S.J., Bandyopadhyay, S., Chang, I., Hadaegh, F.Y.: Phase synchronization control of complex networks of lagrangian systems on adaptive digraphs. Automatica 49(5), 1148–1161 (2013). doi: Google Scholar
  11. 11.
    Chung, S.J., Hadaegh, F.Y.: Swarms of femtosats for synthetic aperture applications. In: 4th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT). St-Hubert, Quebec, Canada (2011)Google Scholar
  12. 12.
    Chung, S.J., Slotine, J.J.: On synchronization of coupled hopf-kuramoto oscillators with phase delays. In: Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 3181–3187 (2010). doi: 10.1109/CDC.2010.5717962
  13. 13.
    Chung, S.J., Slotine, J.J.E.: Cooperative robot control and concurrent synchronization of lagrangian systems. Trans. Rob. 25(3), 686–700 (2009). doi: 10.1109/TRO.2009.2014125. Google Scholar
  14. 14.
    El-Fallah, A., Zatezalo, A., Mahler, R., Mehra, R.K., Pham, K.: Joint search and sensor management of space based eo/ir sensors for leo event estimation. In: Proceedings of the SPIE, vol. 7330, pp. 73,300N–73,300N–12 (2009). doi: 10.1117/12.818292.
  15. 15.
    Epp, C., Robertson, E., Brady, T.: Autonomous landing and hazard avoidance technology (alhat). In: Aerospace Conference, 2008 IEEE, pp. 1–7 (2008). doi: 10.1109/AERO.2008.4526297
  16. 16.
    Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics. Dover, Mineola (2008)zbMATHGoogle Scholar
  17. 17.
    Hoots, F.R., Schumacher, P.W., Glover, R.A.: History of analytical orbit modeling in the u. s. space surveillance system. J. Guid. Control Dyn. 27(2), 174–185 (2004). doi: 10.2514/1.9161. Google Scholar
  18. 18.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)zbMATHCrossRefGoogle Scholar
  19. 19.
    Huertas, A., Cheng, Y., Madison, R.: Passive imaging based multi-cue hazard detection for spacecraft safe landing. In: Aerospace Conference, 2006 IEEE, pp. 14 (2006). doi: 10.1109/AERO.2006.1655794
  20. 20.
    Johnson, A., Golombek, M.: Lander vision system for safe and precise entry descent and landing. In: LPI Workshop on Concepts and Approaches for Mars Landing (2012)Google Scholar
  21. 21.
    Johnson, A., Huertas, A., Werner, R., Montgomery, J.: Analysis of on-board hazard detection and avoidance for safe lunar landing. In: Aerospace Conference, 2008 IEEE, pp. 1–9 (2008)Google Scholar
  22. 22.
    Johnson, A., Ivanov, T.: Analysis and testing of a lidar-based approach to terrain relative navigation for precise lunar landing. In: AIAA Guidance Navigation and Control Conference (AIAA-GNC 2011) (2011)Google Scholar
  23. 23.
    Johnson, A., Keim, J., Ivanov, T.: Analysis of flash lidar field test data for safe lunar landing. In: Aerospace Conference, 2010 IEEE, pp. 1–11 (2010). doi: 10.1109/AERO.2010.5447025
  24. 24.
    Johnson, A., Montgomery, J.: Overview of terrain relative navigation approaches for precise lunar landing. In: Aerospace Conference, 2008 IEEE, pp. 1–10 (2008). doi: 10.1109/AERO.2008.4526302
  25. 25.
    Johnson, A., Willson, R., Cheng, Y., Goguen, J., Leger, C., Sanmartin, M., Matthies, L.: Design through operation of an image-based velocity estimation system for mars landing. Int. J. Comput. Vis. 74(3), 319–341 (2007). doi: 10.1007/s11263-006-0022-z. Google Scholar
  26. 26.
    Montenbruck, O., Gill, E.: Satellite Orbits, Models, Methods, and Applications. Springer, New York (2005)Google Scholar
  27. 27.
    Morgan, D., Chung, S.J., Blackmore, L., Acikmese, B., Bayard, D., Hadaegh, F.Y.: Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations. J. Guid. Control Dyn. 35(5), 1492–1506 (2012). doi: 10.2514/1.55705. Google Scholar
  28. 28.
    Mourikis, A., Trawny, N., Roumeliotis, S., Johnson, A., Ansar, A., Matthies, L.: Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. Robot. 25(2), 264–280 (2009). doi: 10.1109/TRO.2009.2012342 CrossRefGoogle Scholar
  29. 29.
    Poberezhskiy, I., Johnson, A., Chang, D., Ek, E., Natzic, D., Spiers, G., Penniman, S., Short, B.: Flash lidar performance testing: configuration and results. In: SPIE Laser Radar Technology and Applications XVII (2012)Google Scholar
  30. 30.
    Seo, K., Chung, S.J., Slotine, J.J.: Cpg-based control of a turtle-like underwater vehicle. Auton. Robots 28(3), 247–269 (2010). doi: 10.1007/s10514-009-9169-0. Google Scholar
  31. 31.
    Vallado, D., Clain, W.: Fundamentals of Astrodynamics and Applications. Collège custom series. McGraw-Hill, New York (1997).
  32. 32.
    Villalpando, C., Johnson, A., Some, R., Oberlin, J., Goldberg, S.: Investigation of the tilera processor for real time hazard detection and avoidance on the altair lunar lander. In: Aerospace Conference, 2010 IEEE, pp. 1–9 (2010). doi: 10.1109/AERO.2010.5447023
  33. 33.
    Zatezalo, A., El-Fallah, A., Mahler, R., Mehra, R.K., Brown, J.: Dispersed and disparate sensor management for tracking low earth orbit satellites. In: Proceedings of the SPIE, vol. 7336, pp. 73,360I–73,360I–12 (2009). doi: 10.1117/12.819299.
  34. 34.
    Zatezalo, A., El-Fallah, A., Mahler, R., Mehra, R.K., Pham, K.: Optimal constellation design of low earth orbit (leo) eo/ir sensor platforms for space situational awareness. In: Proceedings of the SPIE, vol. 7330, pp. 73,300T–73,300T–11 (2009). doi: 10.1117/12.818304.
  35. 35.
    Zatezalo, A., El-Fallah, A., Mahler, R., Mehra, R.K., Pham, K.: Eo/ir satellite constellations for the early detection and tracking of collision events. In: Proceedings of the SPIE, vol. 7697, pp. 76,970L–76,970L–12 (2010). doi: 10.1117/12.851217.
  36. 36.
    Zatezalo, A., El-Fallah, A., Mahler, R., Mehra, R.K., Pham, K.D.: Multimodel filtering of partially observable space object trajectories. In: Proceedings of the SPIE, vol. 8050, pp. 80,500K–80,500K–12 (2011). doi: 10.1117/12.884609.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fred Y. Hadaegh
    • 1
    Email author
  • Andrew E. Johnson
    • 1
  • David S. Bayard
    • 1
  • Behçet Açıkmeşe
    • 1
  • Soon-Jo Chung
    • 2
  • Raman K. Mehra
    • 3
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCalifornia
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Scientific Systems Company, Inc.WoburnUSA

Personalised recommendations