Skip to main content

On Temporal Graph Exploration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Abstract

A temporal graph is a graph in which the edge set can change from step to step. The temporal graph exploration problem TEXP is the problem of computing a foremost exploration schedule for a temporal graph, i.e., a temporal walk that starts at a given start node, visits all nodes of the graph, and has the smallest arrival time. We consider only temporal graphs that are connected at each step. For such temporal graphs with n nodes, we show that it is \(\mathbf {NP}\)-hard to approximate TEXP with ratio \(O(n^{1-\varepsilon })\) for any \(\varepsilon >0\). We also provide an explicit construction of temporal graphs that require \(\Theta (n^2)\) steps to be explored. We then consider TEXP under the assumption that the underlying graph (i.e. the graph that contains all edges that are present in the temporal graph in at least one step) belongs to a specific class of graphs. Among other results, we show that temporal graphs can be explored in \(O(n^{1.5}k^2\log n)\) steps if the underlying graph has treewidth k and in \(O(n\log ^3 n)\) steps if the underlying graph is a \(2 \times n\) grid. We also show that sparse temporal graphs with regularly present edges can always be explored in O(n) steps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: Largest random component of a k-cube. Combinatorica 2(1), 1–7 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s theorem. Networks 28(3), 125–134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

    Article  MathSciNet  Google Scholar 

  4. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. In: Proc. 25th Conference on IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2011), pp. 209–218. IEEE (2011)

    Google Scholar 

  5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPEDS 27(5), 387–408 (2012)

    Google Scholar 

  6. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. CoRR abs/1504.07976 (2015). arXiv: 1504.07976

  7. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 534–543. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco (1979)

    Google Scholar 

  9. Karlin, A.R., Nelson, G., Tamaki, H.: On the fault tolerance of the butterfly. In: Proc. 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 125–133. ACM (1994)

    Google Scholar 

  10. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kesten, H.: The critical probability of bond percolation on the square lattice equals \({1\over 2}\). Comm. Math. Phys. 74(1), 41–59 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    Google Scholar 

  13. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)

    Article  Google Scholar 

  14. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Michail, O.: An introduction to temporal graphs: An algorithmic perspective. CoRR abs/1503.00278 (2015). arXiv: 1503.00278

  16. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

    Google Scholar 

  17. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical Report 396, Department of Mathematics, Techni-sche Universität Berlin (1994)

    Google Scholar 

  18. Scheideler, C.: Models and techniques for communication in dynamic networks. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 27–49. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Shannon, C.: Presentation of a maze-solving machine. In: Proc. 8th Conference of the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Erlebach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erlebach, T., Hoffmann, M., Kammer, F. (2015). On Temporal Graph Exploration. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics