Skip to main content

Hardness Amplification and the Approximate Degree of Constant-Depth Circuits

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

We establish a generic form of hardness amplification for the approximability of constant-depth Boolean circuits by polynomials. Specifically, we show that if a Boolean circuit cannot be pointwise approximated by low-degree polynomials to within constant error in a certain one-sided sense, then an OR of disjoint copies of that circuit cannot be pointwise approximated even with very high error. As our main application, we show that for every sequence of degrees \(d(n)\), there is an explicit depth-three circuit \(F: \{-1,1\}^n \rightarrow \{-1,1\}\) of polynomial-size such that any degree-\(d\) polynomial cannot pointwise approximate \(F\) to error better than \(1-\exp (-\tilde{\Omega }(nd^{-3/2}))\). As a consequence of our main result, we obtain an \(\exp (-\tilde{\Omega }(n^{2/5}))\) upper bound on the the discrepancy of a function in AC\(^{\text{0 }}\), and an \(\exp (\tilde{\Omega }(n^{2/5}))\) lower bound on the threshold weight of AC\(^{\text{0 }}\), improving over the previous best results of \(\exp (-\Omega (n^{1/3}))\) and \(\exp (\Omega (n^{1/3}))\) respectively.

Our techniques also yield a new lower bound of \(\Omega (n^{1/2}/\log ^{(d-2)/2}(n))\) on the approximate degree of the AND-OR tree of depth \(d\), which is tight up to polylogarithmic factors for any constant \(d\), as well as new bounds for read-once DNF formulas. In turn, these results imply new lower bounds on the communication and circuit complexity of these classes, and demonstrate strong limitations on existing PAC learning algorithms.

The full version of this paper is available at http://arxiv.org/abs/1311.1616.

Supported by an NDSEG Fellowship and NSF grant CNS-1237235.

Parts of this work were done while the author was a graduate student at Harvard University, and a Research Fellow at the Simons Institute for the Theory of Computing. This work was supported by an NSF Graduate Research Fellowship, NSF grants CNS-1011840 and CCF-0915922, and a Research Fellowship from the Simons Institute for the Theory of Computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: The polynomial method in quantum and classical computing. In: FOCS (2008). (Slides available at www.scottaaronson.com/talks/polymeth.ppt)

  2. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. Journal of the ACM 51(4), 595–605 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: Collision and element distinctness with small range. Theory Comput. 1(1), 37–46 (2005)

    Article  MathSciNet  Google Scholar 

  4. Ambainis, A., Childs, A.M., Reichardt, B., Špalek, R., Zhang, S.: Any AND-OR formula of size \(N\) can be evaluated in time \(N^{1/2+o(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bound by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beigel, R.: Perceptrons, PP, and the polynomial hierarchy. Computational Complexity 4, 339–349 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buhrman, H., Vereshchagin, N.K., de Wolf, R.: On computation and communication with small bias. CCC, pp. 24–32 (2007)

    Google Scholar 

  8. Bun, M., Thaler, J.: Dual lower bounds for approximate degree and markov-bernstein inequalities. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 303–314. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Gavinsky, D., Sherstov, A.A.: A separation of NP and coNP in multiparty communication complexity. Theory of Computing 6(1), 227–245 (2010)

    Article  MathSciNet  Google Scholar 

  10. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: ICALP, pp. 291–299 (2003)

    Google Scholar 

  11. Kalai, A., Kanade, V., Mansour, Y.: Reliable agnostic learning. J. Comput. Syst. Sci. 78(5), 1481–1495 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learning halfspaces. SIAM Journal on Computing 37(6), 1777–1805 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kanade, V., Thaler, J.: Distribution-independent reliable learning. In: COLT (2014)

    Google Scholar 

  14. Klivans, A.R., Servedio, R.A.: Learning DNF in time \(2^{\tilde{O}(n^{1/3})}\). J. of Comput. and System Sci. 68(2), 303–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Klivans, A.R., Servedio, R.A.: Toward attribute efficient learning of decision lists and parities. Journal of Machine Learning Research 7, 587–602 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Krause, M.: On the computational power of Boolean decision lists. Computational Complexity 14(4), 362–375 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krause, M., Pudlák, P.: On the computational power of depth-2 circuits with threshold and modulo gates. Theor. Comput. Sci. 174(1–2), 137–156 (1997)

    Article  MATH  Google Scholar 

  18. Lee, T.: A note on the sign degree of formulas (2009). CoRR abs/0909.4607

    Google Scholar 

  19. Minsky, M.L., Papert, S.A.: Perceptions: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)

    Google Scholar 

  20. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. O’Donnell, R., Servedio, R.: New degree bounds for polynomial threshold functions. Combinatorica 30(3), 327–358 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean functions (Preliminary Version). STOC, pp. 468–474 (1992)

    Google Scholar 

  23. Reichardt, B.: Reflections for quantum query algorithms. In: SODA (2011)

    Google Scholar 

  24. Servedio, R.A., Tan, L.-Y., Thaler, J.: Attribute-Efficient learning and weight-degree tradeoffs for polynomial threshold functions. COLT 23, 14.1–14.19 (2012)

    Google Scholar 

  25. Sherstov, A.A.: Approximating the AND-OR Tree. Theory of Computing (2013)

    Google Scholar 

  26. Sherstov, A.A.: Breaking the Minsky-Papert Barrier for constant-depth circuits. STOC (2014)

    Google Scholar 

  27. Sherstov, A.A.: Communication lower bounds using dual polynomials. Bulletin of the EATCS 95, 59–93 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Sherstov, A.A.: Optimal bounds for sign-representing the intersection of two halfspaces by polynomials. STOC, pp. 523–532 (2010)

    Google Scholar 

  29. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sherstov, A.A.: Separating \(\text{ AC }^0\) from depth-2 majority circuits. SIAM J. Comput. 28(6), 2113–2129 (2009)

    Article  MathSciNet  Google Scholar 

  31. Sherstov, A.A.: Strong direct product theorems for quantum communication and query complexity. SIAM J. Comput. 41(5), 1122–1165 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sherstov, A.A.: The multiparty communication complexity of set disjointness. STOC, pp. 525–524 (2012)

    Google Scholar 

  33. Sherstov, A.A.: The intersection of two halfspaces has high threshold degree. FOCS, pp. 343–362 (2009). (To appear in SIAM J. Comput. (special issue for FOCS 2009))

    Google Scholar 

  34. Shi, Y.: Approximating linear restrictions of Boolean functions. Manuscript (2002) web.eecs.umich.edu/shiyy/mypapers/linear02-j.ps

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Bun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bun, M., Thaler, J. (2015). Hardness Amplification and the Approximate Degree of Constant-Depth Circuits. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics