Skip to main content

Tighter Fourier Transform Lower Bounds

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

The Fourier Transform is one of the most important linear transformations used in science and engineering. Cooley and Tukey’s Fast Fourier Transform (FFT) from 1964 is a method for computing this transformation in time \(O(n\log n)\). Achieving a matching lower bound in a reasonable computational model is one of the most important open problems in theoretical computer science. In 2014, improving on his previous work, Ailon showed that if an algorithm speeds up the FFT by a factor of \(b=b(n)\ge 1\), then it must rely on computing, as an intermediate “bottleneck” step, a linear mapping of the input with condition number \(\Omega (b(n))\). Our main result shows that a factor \(b\) speedup implies existence of not just one but \(\Omega (n)\) \(b\)-ill conditioned bottlenecks occurring at \(\Omega (n)\) different steps, each causing information from independent (orthogonal) components of the input to either overflow or underflow. This provides further evidence that beating FFT is hard. Our result also gives the first quantitative tradeoff between computation speed and information loss in Fourier computation on fixed word size architectures. The main technical result is an entropy analysis of the Fourier transform under transformations of low trace, which is interesting in its own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ailon, N.: A lower bound for Fourier transform computation in a linear model over 2x2 unitary gates using matrix entropy. Chicago J. of Theo. Comp. Sci. (2013)

    Google Scholar 

  2. Ailon, N.: An \(n\log n\) lower bound for Fourier transform computation in the well conditioned model (2014). arXiv:1403.1307

  3. Ailon, N.: Tighter Fourier transform complexity tradeoffs. Technical report (2015). (arxiv:1404:1741)

    Google Scholar 

  4. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ailon, N., Liberty, E.: Fast dimension reduction using rademacher series on dual BCH codes. Discrete & Computational Geometry 42(4), 615–630 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ailon, N., Liberty, E.: An almost optimal unrestricted fast Johnson-Lindenstrauss transform. ACM Transactions on Algorithms 9(3), 21 (2013)

    Article  MathSciNet  Google Scholar 

  7. Ailon, N., Rauhut, H.: Fast and rip-optimal transforms. Discrete & Computational Geometry 52(4), 780–798 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Various Authors. List of unsolved problems in computer science. Wikipedia

    Google Scholar 

  9. Cooley, J.W., Tukey, J.W.: An algorithm for the machine computation of complex Fourier series. J. of American Math. Soc., 297–301 (1964)

    Google Scholar 

  10. Cormen,T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edition. MIT Press (2009)

    Google Scholar 

  11. Anindya, De., Kurur, P.P., Saha, C., Saptharishi, R.: Fast integer multiplication using modular arithmetic. SIAM J. on Comp. 42 (2013)

    Google Scholar 

  12. Fürer, M.: Faster integer multiplication. SIAM J. Comp. 39(3), 979–1005 (2009)

    Article  MATH  Google Scholar 

  13. Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication. Technical report (2014). (arXiv:1407.3360)

    Google Scholar 

  14. Indyk, P., Kapralov, M., Price, E.: (Nearly) sample-optimal sparse fourier transform. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 480–499 (2014)

    Google Scholar 

  15. Krahmer, F., Ward, R.: New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property. SIAM J. Math. Analysis 43(3), 1269–1281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through FFTs. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  17. Morgenstern, J.: Note on a lower bound on the linear complexity of the fast Fourier transform. J. ACM 20(2), 305–306 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Papadimitriou, C.H.: Optimality of the fast Fourier transform. J. ACM 26(1), 95–102 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through geometric functional analysis. J. ACM, 54(4) (2007)

    Google Scholar 

  20. Winograd, S.: On computing the discrete Fourier transform. Proc. Nat. Assoc. Sci. 73(4), 1005–1006 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Ailon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ailon, N. (2015). Tighter Fourier Transform Lower Bounds. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics