Skip to main content

The Range of Topological Effects on Communication

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

We continue the study of communication cost of computing functions when inputs are distributed among k processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges.

Chattopadhyay, Radhakrishnan and Rudra (FOCS’14) recently initiated the study of the effect of topology of the network on the total communication cost using tools from \(L_1\) embeddings. Their techniques provided tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. This work addresses two other kinds of natural functions. We show that for a large class of natural functions like Set-Disjointness the communication cost is essentially n times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like \(\text {ED} \circ \text {XOR}\) and \(\text {XOR} \circ \text {ED}\), the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs.

To obtain our results, we use some new tools in addition to ones used in Chattopadhyay et al. These include (i) viewing the communication constraints via a linear program; (ii) using tools from the theory of tree embeddings to prove topology sensitive direct sum results that handle the case of composed functions and (iii) representing the communication constraints of certain problems as a family of collection of multiway cuts, where each multiway cut simulates the hardness of computing the function on the star topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, October 19–22, Miami Beach, Florida, USA, pp. 542–547 (1997). http://doi.ieeecomputersociety.org/10.1109/SFCS.1997.646143

  2. Balcan, M.F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity and privacy. In: COLT, pp. 26.1–26.22 (2012)

    Google Scholar 

  3. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive communication. SIAM J. Comput. 42(3), 1327–1363 (2013). http://dx.doi.org/10.1137/100811969

  4. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing. In: PODS, pp. 273–284 (2013)

    Google Scholar 

  5. Bourgain, J.: On lipschitz embedding of finite metric spaces in hilbert space. Israel J. Math. 52(1–2), 46–52 (1995)

    MathSciNet  Google Scholar 

  6. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight bound for set disjointness in the message-passing model. In: 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 668–677 (2013). http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.77

  7. Chattopadhyay, A., Mukhopadhyay, S.: Tribes is hard in the message-passing model. In: STACS, pp. 224–237 (2015)

    Google Scholar 

  8. Chattopadhyay, A., Rudra, A.: The Range of Topological Effects on Communication. ArXiv e-prints (April 2015)

    Google Scholar 

  9. Chattopadhyay, A., Radhakrishnan, J., Rudra, A.: Topology matters in communication. In: FOCS, pp. 631–640 (2014)

    Google Scholar 

  10. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1), 5–14 (2013). http://doi.acm.org/10.1145/2481528.2481530

  11. Dolev, D., Feder, T.: Multiparty communication complexity. In: FOCS, pp. 428–433 (1989)

    Google Scholar 

  12. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: PODC, pp. 367–376 (2014)

    Google Scholar 

  13. Duris, P., Rolim, J.: Lower bounds on the multiparty communication complexity. J. Comput. Syst. Sci. 56(1), 90–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldreich, O.: Three XOR-Lemmas — an exposition. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 248–272. Springer, Heidelberg (2011)

    Google Scholar 

  15. Goldreich, O., Nisan, N., Wigderson, A.: On yao’s XOR-Lemma. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 273–301. Springer, Heidelberg (2011)

    Google Scholar 

  16. Huang, Z., Radunovic, B., Vojnovic, M., Zhang, Q.: Communication complexity of approximate maximum matching in distributed graph data. In: 32nd Symposium on Theoretical Aspects of Computer Science (STACS), pp. 460–473 (2015)

    Google Scholar 

  17. Karchmer, M., Raz, R., Wigderson, A.: Super-logarithmic depth lower bounds via the direct sum in communication complexity. Computational Complexity 5(3/4), 191–204 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In: SODA, pp. 938–948 (2010)

    Google Scholar 

  19. Kowshik, H., Kumar, P.: Optimal function computation in directed and undirected graphs. IEEE Transcations on Information Theory 58(6), 3407–3418 (2012)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Sun, X., Wang, C., Woodruff, D.P.: On the communication complexity of linear algebraic problems in the message passing model. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 499–513. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-45174-8_34

  21. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Boru̇vka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(13), 3–36 (2001). http://www.sciencedirect.com/science/article/pii/S0012365X00002247; czech and Slovak 2

  23. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multiparty communication complexity, made easy. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 486–501 (2012). http://portal.acm.org/citation.cfm?id=2095158&CFID=63838676&CFTOKEN=79617016

  24. Raz, R., McKenzie, P.: Separation of the monotone \(\text{NC}\) hierarchy. Combinatorica 19(3), 403–435 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sherstov, A.: Separating \(\text{AC}^0\) from depth-2 majority circuits. SIAM J. Comput. 38(6), 2113–2129 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions. Qunatum Computation and Information 9(5), 444–460 (2009)

    MATH  MathSciNet  Google Scholar 

  27. Tiwari, P.: Lower bounds on communication complexity in distributed computer networks. J. ACM 34(4), 921–938 (1987)

    Article  MATH  Google Scholar 

  28. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)

    Article  Google Scholar 

  29. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag New York Inc., New York (2001)

    Google Scholar 

  30. Woodruff, D., Zhang, Q.: Tight bounds for distributed functional monitoring. In: STOC, pp. 941–960 (2012)

    Google Scholar 

  31. Woodruff, D.P., Zhang, Q.: When distributed computation is communication expensive. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 16–30. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Woodruff, D., Zhang, Q.: An optimal lower bound for distinct elements in the message passing model. In: SODA, pp. 718–733 (2014)

    Google Scholar 

  33. Yao, A.C.C.: Some complexity questions related to distributed computing. In: 11th ACM Symposium on Theory of Computing (STOC), pp. 209–213 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atri Rudra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chattopadhyay, A., Rudra, A. (2015). The Range of Topological Effects on Communication. In: HalldĂłrsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics