Skip to main content

Short Proofs of the Kneser-Lovász Coloring Principle

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

We prove that the propositional translations of the Kneser-Lovász theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lovász theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.

J. Aisenberg—Supported in part by NSF grants DMS-1101228 and CCF-1213151.

M.L. Bonet—Supported in part by grant TIN2013-48031-C4-1.

S. Buss—Supported in part by NSF grants DMS-1101228 and CCF-1213151, and Simons Foundation award 306202.

A. Crãciun and G. Istrate—Supported in part by IDEI grant PN-II-ID-PCE-2011-3-0981“Structure and computational difficulty in combinatorial optimization: an interdisciplinary approach”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisenberg, J., Bonet, M.L., Buss, S.R.: Quasi-polynomial size Frege proofs of Frankl’s theorem on the trace of finite sets (201?) (to appear in Journal of Symbolic Logic)

    Google Scholar 

  2. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser, Boston (1995)

    Chapter  Google Scholar 

  3. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic 52, 916–927 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buss, S.R.: Propositional proof complexity: An introduction. In: Berger, U., Schwichtenberg, H. (eds.) Computational Logic, pp. 127–178. Springer, Berlin (1999)

    Chapter  Google Scholar 

  5. Buss, S.R.: Towards NP-P via proof complexity and proof search. Annals of Pure and Applied Logic 163(9), 1163–1182 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buss, S.R.: Quasipolynomial size proofs of the propositional pigeonhole principle (2014) (submitted for publication)

    Google Scholar 

  7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44, 36–50 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Istrate, G., Crãciun, A.: Proof complexity and the Kneser-Lovász theorem. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 138–153. Springer, Heidelberg (2014)

    Google Scholar 

  9. Jeřábek, E.: Dual weak pigeonhole principle, boolean complexity, and derandomization. Annals of Pure and Applied Logic 124, 1–37 (2004)

    Article  Google Scholar 

  10. Krajíček, J.: Bounded Arithmetic. Propositional Calculus and Complexity Theory. Cambridge University Press, Heidelberg (1995)

    Google Scholar 

  11. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial Theory, Series A 25(3), 319–324 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Matoušek, J.: A combinatorial proof of Kneser’s conjecture. Combinatorica 24(1), 163–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4), 417–481 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ziegler, G.M.: Generalized Kneser coloring theorems with combinatorial proofs. Inventiones Mathematicae 147(3), 671–691 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Buss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aisenberg, J., Bonet, M.L., Buss, S., Crãciun, A., Istrate, G. (2015). Short Proofs of the Kneser-Lovász Coloring Principle. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics