Skip to main content

Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

We prove that there exist some 1-counter Büchi automata \(\mathcal {A}_n\) for which some elementary properties are independent of theories like \(T_n\) =: ZFC + “There exist (at least) n inaccessible cardinals", for integers \(n\ge 1\). In particular, if \(T_n\) is consistent, then “\(L(\mathcal {A}_n)\) is Borel", “\(L(\mathcal {A}_n)\) is arithmetical", “\(L(\mathcal {A}_n)\) is \(\omega \)-regular", “\(L(\mathcal {A}_n)\) is deterministic", and “\(L(\mathcal {A}_n)\) is unambiguous" are provable from ZFC + “There exist (at least) \(n+1\) inaccessible cardinals" but not from ZFC + “There exist (at least) n inaccessible cardinals". We prove similar results for infinitary rational relations accepted by 2-tape Büchi automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finkel, O.: Borel hierarchy and omega context free languages. Theoretical Computer Science 290(3), 1385–1405 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Finkel, O.: Borel ranks and Wadge degrees of omega context free languages. Mathematical Structures in Computer Science 16(5), 813–840 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Finkel, O.: On the accepting power of 2-tape büchi automata. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 301–312. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Finkel, O.: The complexity of infinite computations in models of set theory. Logical Methods in Computer Science 5(4:4), 1–19 (2009)

    Google Scholar 

  5. Finkel, O.: Decision problems for recognizable languages of infinite pictures. In: Studies in Weak Arithmetics, Proceedings of the International Conference 28th Weak Arithmetic Days, June 17–19, vol. 196. Publications of the Center for the Study of Language and Information. Lecture Notes, pages 127–151. Stanford University (2010)

    Google Scholar 

  6. Finkel, O.: Some problems in automata theory which depend on the models of set theory. RAIRO - Theoretical Informatics and Applications 45(4), 383–397 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Finkel, O.: Ambiguity of \(\omega \)-languages of Turing machines. Logical Methods in Computer Science 10(3:12), 1–18 (2014)

    Google Scholar 

  8. Gire, F., Nivat, M.: Relations rationnelles infinitaires. Calcolo, pp. 91–125 (1984)

    Google Scholar 

  9. Grädel, E., Thomas, W., Wilke, W. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research, vol. 2500. LNCS. Springer, Heidelberg (2002)

    Google Scholar 

  10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading (2001)

    Google Scholar 

  11. Jech, T.: Set theory, 3rd edn., Springer (2002)

    Google Scholar 

  12. Kunen, K.: Set theory. Studies in Logic and the Foundations of Mathematics, vol. 102. An introduction to independence proofs. North-Holland Publishing Co., Amsterdam (1980)

    Google Scholar 

  13. Lescow, H., Thomas, W.: Logical specifications of infinite computations. In: de Bakker, J.W., de Roever, Willem-Paul, Rozenberg, Grzegorz (eds.) REX 1993. LNCS, vol. 803, pp. 583–621. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  14. Moschovakis, Y.N.: Descriptive set theory. North-Holland Publishing Co., Amsterdam (1980)

    MATH  Google Scholar 

  15. Perrin, D., Pin, J.-E.: Infinite words, automata, semigroups, logic and games. Pure and Applied Mathematics, vol. 141. Elsevier (2004)

    Google Scholar 

  16. Staiger, L.: \(\omega \)-languages. In: Handbook of Formal Languages, vol. 3, pp. 339–387. Springer, Berlin (1997)

    Google Scholar 

  17. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, volume B, Formal models and semantics, pp. 135–191. Elsevier (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Finkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Finkel, O. (2015). Incompleteness Theorems, Large Cardinals, and Automata over Infinite Words. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics