Skip to main content

Chaos Generation in Continuous/Discrete-Time Models

  • Chapter
  • First Online:

Part of the book series: Nonlinear Physical Science ((NPS))

Abstract

We address the differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. The existence of a chaotic attractor and the complex behavior of all solutions are investigated. Appropriate simulations are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.O. Chua, M. Komuro, T. Matsumoto, The double scroll family, parts I and II. IEEE Trans. Circuit Syst. CAS-33, 1072–1118 (1986)

    Google Scholar 

  2. M. Hénon, A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    ADS  MATH  Google Scholar 

  3. T.Y. Li, J.A. Yorke, Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    MathSciNet  MATH  Google Scholar 

  4. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    ADS  Google Scholar 

  5. R.M. May, Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    ADS  Google Scholar 

  6. D. Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems, in Bifurcation Theory and Applications in Scientific Disciplines, ed. by O. Gurel, O.E. Rössler (New York Academy of Sciences, New York, 1979), pp. 408–446

    Google Scholar 

  7. S. Smale, Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    MathSciNet  MATH  Google Scholar 

  8. R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, Menlo Park, 1989)

    MATH  Google Scholar 

  9. N. Minorsky, Theory of Nonlinear Control Systems (McGraw-Hill Book Company, New York, 1969)

    Google Scholar 

  10. Ya.Z. Tsypkin, Sampling Systems Theory and Its Application, vols. 1,2 (The Macmillan Company, New York, 1964)

    Google Scholar 

  11. A.A. Andronov, S.E. Chaikin, Theory of Oscillations (Princeton University Press, Princeton, 1949)

    Google Scholar 

  12. J. Awrejcewicz, C.H. Lamarque, Bifurcation and Chaos in Nonsmooth Mechanical Systems (World Scientific Publishing, Singapore, 2003)

    MATH  Google Scholar 

  13. A.C.J. Luo, Global Transversality, Resonance and Chaotic Dynamics (World Scientific, Hackensack, 2008)

    MATH  Google Scholar 

  14. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Boca Raton, 1995)

    MATH  Google Scholar 

  15. S. Wiggins, Global Bifurcations and Chaos: Analytical Methods (Springer, New York, 1988)

    MATH  Google Scholar 

  16. M.U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type. J. Math. Anal. Appl. 336, 646–663 (2007)

    MathSciNet  MATH  Google Scholar 

  17. J. Wiener, Generalized Solutions of Functional Differential Equations (World Scientific, Singapore, 1993)

    MATH  Google Scholar 

  18. S.M. Hammel, J.A. Yorke, C. Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits? J. Complex. 3, 136–145 (1987)

    MathSciNet  MATH  Google Scholar 

  19. S.H. Strogatz, Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books, New York, 1994)

    Google Scholar 

  20. E. Akin, S. Kolyada, Li-Yorke sensitivity. Nonlinearity 16, 1421–1433 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  21. A.N. Sharkovskii, Coexistence of cycles of a continuous map of a line into itself (Russian). Ukr. Mat. Zh. 16, 61–71 (1964)

    Google Scholar 

  22. W. Huang, X. Ye, Devaney’s chaos or 2-scattering implies Li-Yorkes chaos. Topol. Appl. 117, 259–272 (2002)

    MathSciNet  MATH  Google Scholar 

  23. P. Kloeden, Z. Li, Li-Yorke chaos in higher dimensions: a review. J. Differ. Equ. Appl. 12, 247–269 (2006)

    MathSciNet  MATH  Google Scholar 

  24. P. Li, Z. Li, W.A. Halang, G. Chen, Li-Yorke chaos in a spatiotemporal chaotic system. Chaos Solitons Fractals 33(2), 335–341 (2007)

    MathSciNet  ADS  MATH  Google Scholar 

  25. F.R. Marotto, Snap-back repellers imply chaos in \(\mathbb{R}^n\). J. Math. Anal. Appl. 63, 199–223 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Y. Shi, P. Yu, Chaos induced by regular snap-back repellers. J. Math. Anal. Appl. 337(2), 1480–1494 (2008)

    MathSciNet  MATH  Google Scholar 

  27. A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations (World Scientific, Singapore, 1995)

    MATH  Google Scholar 

  28. M.U. Akhmet, Perturbations and Hopf bifurcation of the planar discontinuous dynamical system. Nonlinear Anal. 60, 163–178 (2005)

    MathSciNet  MATH  Google Scholar 

  29. M.U. Akhmet, On the general problem of stability for impulsive differential equations. J. Math. Anal. Appl. 288, 182–196 (2003)

    MathSciNet  MATH  Google Scholar 

  30. M.U. Akhmetov, N.A. Perestyuk, The comparison method for differential equations with impulse action. Differ. Equ. 26, 1079–1086 (1990)

    MathSciNet  MATH  Google Scholar 

  31. A. Halanay, D. Wexler, Qualitative Theory of Impulsive Systems (Romanian) (Edit. Acad. RPR, Bucuresti, 1968)

    Google Scholar 

  32. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989)

    MATH  Google Scholar 

  33. M.U. Akhmet, G.A. Bekmukhambetova, A prototype compartmental model of the blood pressure distribution. Nonlinear Anal.: RWA 11, 1249–1257 (2010)

    MathSciNet  MATH  Google Scholar 

  34. L. Glass, M.C. Mackey, A simple model for phase locking of biological oscillators. J. Math. Biol. 7, 339–352 (1979)

    MathSciNet  MATH  Google Scholar 

  35. F.C. Hoppensteadt, C.S. Peskin, Mathematics in Medicine and in the Life Sciences (Springer, New York, 1992)

    MATH  Google Scholar 

  36. J.P. Keener, F.C. Hoppensteadt, J. Rinzel, Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41, 503–517 (1981)

    MathSciNet  Google Scholar 

  37. W. Lin, J. Ruan, Chaotic dynamics of an integrate-and-fire circuit with periodic pulse-train input. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 50, 686–693 (2003)

    MathSciNet  Google Scholar 

  38. R.E. Mirollo, S.H. Strogatz, Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)

    MathSciNet  MATH  Google Scholar 

  39. T. Yang, L.O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int. J. Bifurc. Chaos 7, 645–664 (1997)

    MathSciNet  MATH  Google Scholar 

  40. J. Zhen, Z. Ma, M. Han, The existence of periodic solutions of \(n\)-species Lotka-Volterra competition systems with impulses. Chaos Solitons Fractals 22, 181–188 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  41. W. Lin, Description of complex dynamics in a class if impulsive differential equations. Chaos Solutions Fractals 25, 1007–1017 (2005)

    ADS  MATH  Google Scholar 

  42. A.N. Kolmogorov, On the Skorokhod convergence (Russian). Teor. Veroyatnost. i Primenen. 1, 239–247 (1956)

    MathSciNet  MATH  Google Scholar 

  43. L.S. Block, W.A. Coppel, Dynamics in One Dimension (Springer, Berlin, 1991)

    Google Scholar 

  44. M.U. Akhmet, Devaney’s chaos of a relay system. Commun. Nonlinear Sci. Numer. Simul. 14, 1486–1493 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  45. M.U. Akhmet, Dynamical synthesis of quasi-minimal sets. Int. J. Bifurc. Chaos 19, 2423–2427 (2009)

    MathSciNet  MATH  Google Scholar 

  46. M.U. Akhmet, Li-Yorke chaos in the system with impacts. J. Math. Anal. Appl. 351, 804–810 (2009)

    MathSciNet  MATH  Google Scholar 

  47. L. Shilnikov, Bifurcations and strange attractors, in Proceedings of the International Congress of Mathematicians, vol. III (Higher Education Press, Beijing, 2002), pp. 349–372

    Google Scholar 

  48. R. Brown, L. Chua, Dynamical synthesis of Poincaré maps. Int. J. Bifurc. Chaos 3, 1235–1267 (1993)

    MathSciNet  MATH  Google Scholar 

  49. R. Brown, L. Chua, Chaos or turbulence? Int. J. Bifurc. Chaos 2, 1005–1009 (1992)

    MathSciNet  MATH  Google Scholar 

  50. P. Atherton, Nonlinear Control Engineering (Van Nostrand Reinhold Company, New York, 1982)

    MATH  Google Scholar 

  51. A.S. Elwakil, Nonautonomous pulse-driven chaotic oscillator based on Chua’s circuit. Microelectron. J. 33, 479–486 (2002)

    Google Scholar 

  52. A.L. Fradkov, Cybernetical Physics: From Control of Chaos to Quantum Control (Springer, Berlin, 2007)

    Google Scholar 

  53. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    MathSciNet  ADS  MATH  Google Scholar 

  54. A. Garfinkel, M.L. Spano, W.L. Ditto, J.N. Weiss, Controlling cardiac chaos. Science 257, 1230–1233 (1992)

    ADS  Google Scholar 

  55. A.F. Filippov, Differential Equations with Discontinuous Right Hand Sides (Kluwer, Dordrecht, 1988)

    MATH  Google Scholar 

  56. G.R. Sell, Topological Dynamics and Ordinary Differential Equations (Van Nostrand Reinhold Company, New York, 1971)

    MATH  Google Scholar 

  57. E.A. Barbashin, Introduction to the Theory of Stability (Wolters-Noordhoff Publishing, Groningen, 1970)

    MATH  Google Scholar 

  58. D.V. Anosov, Geodesic flows and closed Riemannian manifolds with negative curvature. Proc. Steklov Inst. Math. 90, 209 (1967)

    MathSciNet  Google Scholar 

  59. R. Bowen, \(\omega \)—limit sets for Axiom \(A\) diffeomorfisms. J. Differ. Equ. 18, 333–339 (1975)

    MathSciNet  ADS  MATH  Google Scholar 

  60. M.U. Akhmet, Shadowing property of hybrid systems (in progress)

    Google Scholar 

  61. G.D. Birkhoff, Dynamical Systems (American Mathematical Society, Providence, 1966)

    MATH  Google Scholar 

  62. S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse (Princeton University Press, Princeton, 1965), pp. 63–70

    Google Scholar 

  63. M. Benedicks, L. Carleson, The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)

    MathSciNet  MATH  Google Scholar 

  64. J. Guckenheimer, R.F. Williams, Structural stability of Lorenz attractors. Publ. Math. 50, 307–320 (1979)

    Google Scholar 

  65. M.V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81, 39–88 (1981)

    MathSciNet  ADS  MATH  Google Scholar 

  66. I. Stewart, The Lorenz attractor exists. Nature 406, 948–949 (2000)

    Google Scholar 

  67. M. Akhmet, Principles of Discontinuous Dynamical Systems (Springer, New York, 2010)

    MATH  Google Scholar 

  68. K. Palmer, Shadowing in Dynamical Systems: Theory and Applications (Kluwer Academic Publishers, Dordrecht, 2000)

    Google Scholar 

  69. S.Yu. Pilugin, Shadowing in Dynamical Systems (Springer, Berlin, 1999)

    Google Scholar 

  70. E.M. Coven, I. Kan, J.A. Yorke, Pseudo-orbit shadowing in the family of tent maps. Trans. Am. Math. Soc. 308, 227–241 (1988)

    MathSciNet  MATH  Google Scholar 

  71. H.E. Nusse, J.A. Yorke, Is every approximate trajectory of some process near an exact trajectory of a nearby process? Commun. Math. Phys. 114, 363–379 (1988)

    MathSciNet  ADS  MATH  Google Scholar 

  72. J.M. Gonzáles-Miranda, Synchronization and Control of Chaos (Imperial College Press, London, 2004)

    Google Scholar 

  73. Y. Ueda, Randomly transitional phenomena in the system governed by Duffing’s equation. J. Stat. Phys. 20, 181–196 (1979)

    MathSciNet  ADS  Google Scholar 

  74. Y. Ueda, Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motions, in New Approaches to Nonlinear Problems in Dynamics, ed. by P.J. Holmes (SIAM, Philadelphia, 1980)

    Google Scholar 

  75. Y. Ueda, Explosion of strange attractors exhibited by Duffing’s equation. Ann. N.Y. Acad. Sci. 357, 422–434 (1980)

    ADS  Google Scholar 

  76. K.R. Asfar, K.K. Masoud, On the period-doubling bifurcations in the Duffing’s oscillator with negative linear stiffness. Trans. ASME J. Vib. Acoust. 114, 489–494 (1992)

    ADS  Google Scholar 

  77. V. Brunsden, J. Cortell, P.J. Holmes, Power spectra of chaotic vibrations of a buckled beam. J. Sound Vib. 130, 1–25 (1989)

    MathSciNet  ADS  MATH  Google Scholar 

  78. J.A. Gottwald, L.N. Virgin, E. Dowell, Experimental mimicry of Duffing’s equation. J. Sound Vib. 158, 447–467 (1992)

    MathSciNet  ADS  Google Scholar 

  79. F.C. Moon, Experiments on chaotic motions of a forced nonlinear oscillator: strange attractors. Trans. ASME J. Appl. Mech. 47, 638–644 (1980)

    ADS  Google Scholar 

  80. F.C. Moon, P.J. Holmes, A magnetoelastic strange attractor. J. Sound Vib. 65, 275–296 (1979)

    ADS  MATH  Google Scholar 

  81. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (Wiley, Chichester, 2002)

    Google Scholar 

  82. M. Akhmet, Nonlinear Hybrid Continuous/Discrete-Time Models (Atlantis Press, Paris, 2011)

    Google Scholar 

  83. M.U. Akhmet, Creating a chaos in a system with relay. Int. J. Qual. Theory Differ. Equ. Appl. 3, 3–7 (2009)

    MATH  Google Scholar 

  84. M.U. Akhmet, Shadowing and dynamical synthesis. Int. J. Bifurc. Chaos 19, 3339–3346 (2009)

    MathSciNet  MATH  Google Scholar 

  85. J. Awrejcewicz, M.M. Holicke, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov Type Methods (World Scientific Publishing, Singapore, 2007)

    MATH  Google Scholar 

  86. T. Kousaka, T. Ueta, H. Kawakami, Controlling chaos in a state-dependent nonlinear system. Int. J. Bifurc. Chaos 12, 1111–1119 (2002)

    MathSciNet  MATH  Google Scholar 

  87. A. Venkatesan, S. Parthasarathy, M. Lakshmanan, Occurrence of multiple period-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems. Chaos Solitons Fractals 18, 891–898 (2003)

    ADS  MATH  Google Scholar 

  88. G. Tao, F.L. Lewis (eds.), Adaptive Control of Nonsmooth Dynamic Systems (Springer, London, 2001)

    MATH  Google Scholar 

  89. J. Zhou, C. Wen, Adaptive Backstepping Control of Uncertain Systems, Nonsmooth Nonlinearities, Interactions or Time-Variations (Springer, Berlin, 2008)

    MATH  Google Scholar 

  90. H. Cho, E.W. Bai, Convergence results for an adaptive dead zone inverse. Int. J. Adapt. Control Signal Process. 12, 451–466 (1998)

    MathSciNet  MATH  Google Scholar 

  91. A.J. Kurdila, G. Webb, Compensation for distributed hysteresis operators in active structural systems. J. Guid. Control Dyn. 20, 1133–1140 (1997)

    ADS  MATH  Google Scholar 

  92. V.I. Babitsky, Theory of Vibro-Impact Systems and Applications (Springer, Berlin, 1998)

    MATH  Google Scholar 

  93. M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems (Springer, London, 2008)

    MATH  Google Scholar 

  94. B. Brogliato, Impacts in Mechanical Systems-Analysis and Modeling (Springer, New York, 2000)

    Google Scholar 

  95. J. Guckenheimer, P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1997)

    Google Scholar 

  96. R.A. Ibrahim, Vibro-Impact Dynamics (Springer, Berlin, 2009)

    Google Scholar 

  97. A.E. Kobrinskii, A.A. Kobrinskii, Vibro-Shock Systems (Russian) (Nauka, Moscow, 1971)

    Google Scholar 

  98. R.F. Nagaev, Mechanical Processes with Repeated and Decaying Impacts (Russian) (Nauka, Moscow, 1985)

    Google Scholar 

  99. A.B. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators. Nonlinearity 14, 1517–1542 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  100. H.E. Nusse, E. Ott, J.A. Yorke, Border-collision bifurcations: an explanation for observed bifurcation phenomena. Phys. Rev. E 49, 1073–1076 (1994)

    MathSciNet  ADS  Google Scholar 

  101. F. Peterka, Part I: Theoretical analysis of n-multiple \(\left(1/n\right)\)-impact solutions. CSAV Acta Technica 26, 462–473 (1974)

    Google Scholar 

  102. A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Plipchuk, A.A. Zevin, Normal Modes and Localization in Nonlinear Systems (Wiley, New York, 1996)

    MATH  Google Scholar 

  103. L.A. Wood, K.P. Byrne, Analysis of a random repeated impact process. J. Sound Vib. 82, 329–345 (1981)

    ADS  Google Scholar 

  104. V.F. Zhuravlev, A method for analyzing vibration-impact systems by means of special functions. Mech. Solids 11, 23–27 (1976)

    MathSciNet  ADS  Google Scholar 

  105. J.Y. Lee, J.J. Yan, Control of impact oscillator. Chaos Solitons Fractals 28(1), 136–142 (2006)

    ADS  MATH  Google Scholar 

  106. J.Y. Lee, J.J. Yan, Position control of double-side impact oscillator. Mech. Syst. Signal Process. 21(2), 1076–1083 (2007)

    ADS  Google Scholar 

  107. J.R. Kalagnanam, Controlling chaos, the example of an impact oscillator. ASME J. Dyn. Syst. Meas. Control 116, 557–564 (1994)

    Google Scholar 

  108. S.W. Shaw, A.G. Haddow, S.R. Hsieh, Properties of cross-well chaos in an impacting systems. Philos. Trans. R. Soc. Lond. A 347, 391–410 (1994)

    ADS  MATH  Google Scholar 

  109. M.R. Joglekar, E. Sander, J.A. Yorke, Fixed points indices and period-doubling cascades. J. Fixed Point Theory Appl. 8, 151–176 (2010)

    MathSciNet  MATH  Google Scholar 

  110. E. Sander, J.A. Yorke, Period-doubling cascades for large perturbations of Hénon families. J. Fixed Point Theory Appl. 6, 153–163 (2009)

    MathSciNet  MATH  Google Scholar 

  111. M. Levi, Qualitative Analysis of the Periodically Forced Relaxation Oscillations (Memoirs of the American Mathematical Society, Providence, 1981)

    Google Scholar 

  112. C. Grebogi, J.A. Yorke, The Impact of Chaos on Science and Society (United Nations University Press, Tokyo, 1997)

    Google Scholar 

  113. E. Sander, J.A. Yorke, Connecting period-doubling cascades to chaos. Int. J. Bifurc. Chaos 22, 1–16 (2012)

    MathSciNet  Google Scholar 

  114. M.U. Akhmet, Homoclinical structure of the chaotic attractor. Commun. Nonlinear Sci. Numer. Simul. 15, 819–822 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  115. M.U. Akhmet, M.O. Fen, Chaotic period-doubling and OGY control for the forced Duffing equation. Commun. Nonlinear Sci. Numer. Simul. 17, 1929–1946 (2012)

    MathSciNet  ADS  MATH  Google Scholar 

  116. K. Thamilmaran, M. Lakshmanan, Rich variety of bifurcations and chaos in a variant of Murali-Lakshmanan-Chua circuit. Int. J. Bifurc. Chaos 10, 1781–1785 (2000)

    Google Scholar 

  117. T. Kapitaniak, Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics (Butler and Tanner Ltd., Frome, 1996)

    MATH  Google Scholar 

  118. T. Kapitaniak, Controlling chaotic oscillators without feedback. Chaos Solitons Fractals 2, 519–527 (1992)

    ADS  MATH  Google Scholar 

  119. U. Dressler, G. Nitsche, Controlling chaos using time delay coordinates. Phys. Rev. Lett. 68, 1–4 (1992)

    ADS  Google Scholar 

  120. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Rev. A 170, 421–428 (1992)

    Google Scholar 

  121. A.V. Savkin, R.J. Evans, Hybrid Dynamical Systems: Controller and Sensor Switching Problems (Birkhäuser, Boston, 2002)

    Google Scholar 

  122. A.J. van der Schaft, J.M. Schumacher, An Introduction to Hybrid Dynamical Systems (Springer, London, 2000)

    MATH  Google Scholar 

  123. A. Khadra, X. Liu, X. Shen, Application of impulsive synchronization to communication security. IEEE Trans. Circuits Syst.-I, Fundam. Theory Appl. 50, 341–351 (2003)

    MathSciNet  Google Scholar 

  124. G. Kolumban, P. Kennedy, L.O. Chua, The role of synchronization in digital communications using chaos-part II: chaotic modulation and chaotic synchronization. IEEE Trans. Circuit Syst. 45, 1129–1140 (1998)

    MathSciNet  MATH  Google Scholar 

  125. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990)

    MathSciNet  ADS  MATH  Google Scholar 

  126. C. Tresser, P.A. Worfolk, H. Bass, Master-slave synchronization from the point of view of global dynamics. Chaos 5, 693–699 (1995)

    MathSciNet  ADS  MATH  Google Scholar 

  127. N.T. Crook, C.H. Dobbyn, T. olde Scheper, Chaos as a desirable stable state of artificial neural networks, Advances in Soft Computing: Soft Computing Techniques and Applications (Physica-Verlag, Heidelberg, 2000), pp. 52–60

    Google Scholar 

  128. N. Crook, T. olde Scheper, A novel chaotic neural network architecture, in ESANN’2001 Proceedings—European Symposium on Artificial Neural Networks Bruges (Belgium), D-Facto Public (2001), pp. 295–300

    Google Scholar 

  129. C. Lourenco, A. Babloyantz, Control of spatiotemporal chaos in neural networks. Int. J. Neural Syst. 7, 507–517 (1996)

    Google Scholar 

  130. I. Tsuda, A new type of self-organization associated with chaotic dynamics in neural networks. Int. J. Neural Syst. 7, 451–459 (1996)

    Google Scholar 

  131. D. Gulick, Encounters with Chaos (University of Maryland, College Park, 1992)

    Google Scholar 

  132. H.G. Schuster, W. Just, Deterministic Chaos, An Introduction (Wiley-VCH, Federal Republic of Germany, 2005)

    MATH  Google Scholar 

  133. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  134. J.K. Hale, Ordinary Differential Equations (Krieger Publishing Company, Malabar, 1980)

    MATH  Google Scholar 

  135. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer, New York, 1996)

    MATH  Google Scholar 

  136. I. Zelinka, S. Celikovsky, H. Richter, G. Chen (eds.), Evolutionary Algorithms and Chaotic Systems (Springer, Berlin, 2010)

    MATH  Google Scholar 

  137. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  138. E. Ott, T. Sauer, J.A. Yorke, Coping with Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems (Wiley, New York, 1994)

    MATH  Google Scholar 

  139. K. Ramasubramanian, M.S. Sriram, A comparative study of computation of Lyapunov spectra with different algorithms. Phys. D 139, 72–86 (2000)

    MathSciNet  MATH  Google Scholar 

  140. J.C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  141. Y.V. Andreyev, A.S. Dmitriev, E.V. Efremova, Dynamic separation of chaotic signals in the presence of noise. Phys. Rev. E 65, 046220 (2002)

    ADS  Google Scholar 

  142. H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 1999)

    MATH  Google Scholar 

  143. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)

    MATH  Google Scholar 

  144. M.J. Feigenbaum, Universal behavior in nonlinear systems, Los Alamos Sci./Summer 4–27 (1980)

    Google Scholar 

  145. F.H. Abed, H.O. Wang, R.C. Chen, Stabilization of period doubling bifurcations and implications for control of chaos. Phys. D 70, 154–164 (1994)

    MathSciNet  MATH  Google Scholar 

  146. Y. Braiman, I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66, 2545–2548 (1991)

    MathSciNet  ADS  MATH  Google Scholar 

  147. G. Chen, X. Yu, On time delayed feedback control of chaos. IEEE Trans. Circuits Syst.-I 46, 767–772 (1999)

    MATH  Google Scholar 

  148. R. Lima, M. Pettini, Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)

    MathSciNet  ADS  Google Scholar 

  149. J.E.S. Socolar, D.W. Sukow, D.J. Gauthier, Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E 50, 3245–3248 (1994)

    ADS  Google Scholar 

  150. M.S. Vieira, A.J. Lichtenberg, Controlling chaos using nonlinear feedback with delay. Phys. Rev. E 54, 1200–1207 (1996)

    ADS  Google Scholar 

  151. L. Yang, Z. Liu, J. Mao, Controlling hyperchaos. Phys. Rev. Lett. 84, 67–70 (2000)

    ADS  Google Scholar 

  152. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, New York, 2001)

    Google Scholar 

  153. J. McGuire, M.T. Batchelor, B. Davies, Linear and optimal non-linear control of one-dimensional maps. Phys. Lett. A 233, 361–364 (1997)

    MathSciNet  ADS  MATH  Google Scholar 

  154. P. Melby, J. Kaidel, N. Weber, A. Hübler, Adaptation to the edge of chaos in the self-adjusting logistic map. Phys. Rev. Lett. 84, 5991–5993 (2000)

    ADS  Google Scholar 

  155. M.S. Baptista, Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  156. N.J. Corron, An exactly solvable chaotic differential equation. Dyn. Contin. Discret. Impuls. Syst. Ser. A: Math. Anal. 16, 777–788 (2009)

    MathSciNet  MATH  Google Scholar 

  157. W. Melo, S. Strien, One-Dimensional Dynamics (Springer, Berlin, 1993)

    MATH  Google Scholar 

  158. M. Ding, C. Grebogi, J.A. Yorke, Chaotic Dynamics, The Impact of Chaos on Science and Society, 1991 (United Nations University Press, Tokyo, 1997), pp. 1–17

    Google Scholar 

  159. P. Collet, J.P. Eckmann, Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Basel, 1980)

    MATH  Google Scholar 

  160. A. Khadra, X. Liu, X. Shen, Impulsive control and synchronization of spatiotemporal chaos. Chaos Solitons Fractals 26, 615–636 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  161. M.U. Akhmet, The complex dynamics of the cardiovascular system. Nonlinear Anal.: Theory Methods Appl. 71, e1922–e1931 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Akhmet .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akhmet, M., Fen, M.O. (2016). Chaos Generation in Continuous/Discrete-Time Models. In: Replication of Chaos in Neural Networks, Economics and Physics. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47500-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47500-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47499-0

  • Online ISBN: 978-3-662-47500-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics