Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 1261 Accesses

Abstract

The theory of dynamical systems starts with H. Poincaré, who studied nonlinear differential equations by introducing qualitative techniques to discuss the global properties of solutions (Devaney, An Introduction to Chaotic Dynamical Systems, 1989) [1]. His discovery of the homoclinic orbits figures prominently in the studies of chaotic dynamical systems. Poincaré first encountered the presence of homoclinic orbits in the three-body problem of celestial mechanics (Andersson, Arch. Hist. Exact Sci., 48:133–147, 1994) [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, Menlo Park, 1989)

    MATH  Google Scholar 

  2. K.G. Andersson, Poincaré’s discovery of homoclinic points. Arch. Hist. Exact Sci. 48, 133–147 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  3. S.V. Gonchenko, L.P. Shil’nikov, D.V. Turaev, Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits. Chaos 6(1), 15–31 (1996)

    MathSciNet  ADS  MATH  Google Scholar 

  4. L.P. Shil’nikov, On a Poincaré-Birkhoff problem. Math. USSR-Sbornik 3(3), 353–371 (1967)

    Google Scholar 

  5. S. Smale, Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse (Princeton University Press, Princeton, 1965), pp. 63–70

    Google Scholar 

  6. T.Y. Li, J.A. Yorke, Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    MathSciNet  MATH  Google Scholar 

  7. E. Akin, S. Kolyada, Li-Yorke sensitivity. Nonlinearity 16, 1421–1433 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  8. P. Kloeden, Z. Li, Li-Yorke chaos in higher dimensions: a review. J. Differ. Equ. Appl. 12, 247–269 (2006)

    MathSciNet  MATH  Google Scholar 

  9. P. Li, Z. Li, W.A. Halang, G. Chen, Li-Yorke chaos in a spatiotemporal chaotic system. Chaos Solitons Fractals 33(2), 335–341 (2007)

    MathSciNet  ADS  MATH  Google Scholar 

  10. F.R. Marotto, Snap-back repellers imply chaos in \(\mathbb{R}^n\). J. Math. Anal. Appl. 63, 199–223 (1978)

    MathSciNet  MATH  Google Scholar 

  11. J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques. J. Math. Pures et Appl. 4, 27–74 (1898)

    MATH  Google Scholar 

  12. M. Morse, G.A. Hedlund, Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)

    MathSciNet  Google Scholar 

  13. C. Grebogi, J.A. Yorke, The Impact of Chaos on Science and Society (United Nations University Press, Tokyo, 1997)

    Google Scholar 

  14. J. Hale, H. Koçak, Dynamics and Bifurcations (Springer, New York, 1991)

    MATH  Google Scholar 

  15. J. Kennedy, J.A. Yorke, Topological horseshoes. Trans. Am. Math. Soc. 353, 2513–2530 (2001)

    MathSciNet  MATH  Google Scholar 

  16. S. Wiggins, Global Bifurcations and Chaos: Analytical Methods (Springer, New York, 1988)

    MATH  Google Scholar 

  17. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

    MATH  Google Scholar 

  18. M. Akhmet, Nonlinear Hybrid Continuous/Discrete-Time Models (Atlantis Press, Paris, 2011)

    Google Scholar 

  19. M.U. Akhmet, Devaney’s chaos of a relay system. Commun. Nonlinear Sci. Numer. Simul. 14, 1486–1493 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  20. M.U. Akhmet, Li-Yorke chaos in the system with impacts. J. Math. Anal. Appl. 351, 804–810 (2009)

    MathSciNet  MATH  Google Scholar 

  21. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Boca Raton, 1995)

    MATH  Google Scholar 

  22. S. Smale, Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    MathSciNet  MATH  Google Scholar 

  23. J. Guckenheimer, P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1997)

    Google Scholar 

  24. A.L. Fradkov, Cybernetical Physics: From Control of Chaos to Quantum Control (Springer, Berlin, 2007)

    Google Scholar 

  25. D. Ruelle, F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    MathSciNet  ADS  MATH  Google Scholar 

  26. D. Gulick, Encounters with Chaos (University of Maryland, College Park, 1992)

    Google Scholar 

  27. H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 1999)

    MATH  Google Scholar 

  28. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    ADS  Google Scholar 

  29. M. Cartwright, J. Littlewood, On nonlinear differential equations of the second order I: the equation \(\ddot{y}- k(1 - y^2)^{\prime }y + y = bk cos(\lambda t + a)\), \(k\) large. J. Lond. Math. Soc. 20, 180–189 (1945)

    MathSciNet  MATH  Google Scholar 

  30. N. Levinson, A second order differential equation with singular solutions. Ann. Math. 50, 127–153 (1949)

    MathSciNet  Google Scholar 

  31. J. Guckenheimer, R.F. Williams, Structural stability of Lorenz attractors. Publ. Math. 50, 307–320 (1979)

    Google Scholar 

  32. M. Levi, Qualitative Analysis of the Periodically Forced Relaxation Oscillations (Memoirs of the American Mathematical Society, Providence, 1981)

    Google Scholar 

  33. L.O. Chua, M. Komuro, T. Matsumoto, The double scroll family, parts I and II. IEEE Trans. Circuit Syst. CAS-33, 1072–1118 (1986)

    Google Scholar 

  34. M. Hénon, A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    ADS  MATH  Google Scholar 

  35. T. Matsumoto, L.O. Chua, M. Komuro, The double scroll. IEEE Trans. Circuit Syst. CAS-32, 797–818 (1985)

    Google Scholar 

  36. Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    MathSciNet  ADS  Google Scholar 

  37. O.E. Rössler, An equation for continuous chaos. Phys. Lett. 57A, 397–398 (1976)

    ADS  Google Scholar 

  38. O.E. Rössler, An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    MathSciNet  ADS  MATH  Google Scholar 

  39. E. Sander, J.A. Yorke, Period-doubling cascades for large perturbations of Hénon families. J. Fixed Point Theory Appl. 6, 153–163 (2009)

    MathSciNet  MATH  Google Scholar 

  40. S. Sato, M. Sano, Y. Sawada, Universal scaling property in bifurcation structure of Duffing’s and of generalized Duffing’s equations. Phys. Rev. A 28, 1654–1658 (1983)

    MathSciNet  ADS  Google Scholar 

  41. S.W. Shaw, A.G. Haddow, S.R. Hsieh, Properties of cross-well chaos in an impacting systems. Philos. Trans. R. Soc. Lond. A 347, 391–410 (1994)

    ADS  MATH  Google Scholar 

  42. K. Thamilmaran, M. Lakshmanan, Rich variety of bifurcations and chaos in a variant of Murali-Lakshmanan-Chua circuit. Int. J. Bifurc. Chaos 10, 1781–1785 (2000)

    Google Scholar 

  43. T. Courtat, C. Gloaguen, S. Douady, Mathematics and morphogenesis of cities: a geometrical approach. Phys. Rev. E 83, 1–12 (2011)

    MathSciNet  Google Scholar 

  44. S. Roudavski, Towards morphogenesis in architecture. Int. J. Archit. Comput. 7, 345–374 (2009)

    Google Scholar 

  45. L.A. Taber, Towards a unified theory for morphomechanics. Philos. Trans. R. Soc. A 367, 3555–3583 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  46. P. Bourgine, A. Lesne, Morphogenesis: Origins of Patterns and Shapes (Springer, Berlin, 2011)

    Google Scholar 

  47. C. Hagége, The Language Builder: An Essay on the Human Signature in Linguistic Morphogenesis (John Benjamins Publishing Co., Amsterdam, 1993)

    Google Scholar 

  48. M.S. Archer, Realistic Social Theory: The Morphogenetic Approach (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  49. W. Buckley, Sociology and Modern Systems Theory (Prentice Hall, New Jersey, 1967)

    Google Scholar 

  50. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 237, 37–72 (1952)

    ADS  Google Scholar 

  51. J. Von Neumann, A.W. Burks (eds.), The Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, 1966)

    Google Scholar 

  52. M. Farkas, Periodic Motions (Springer, New York, 2010)

    Google Scholar 

  53. J.L. Massera, The existence of periodic solutions of systems of differential equations. Duke Math. J. 17, 457–475 (1950)

    MathSciNet  MATH  Google Scholar 

  54. H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E 53, 4528–4535 (1996)

    ADS  Google Scholar 

  55. V. Afraimovich, J.R. Chazottes, A. Cordonet, Nonsmooth functions in generalized synchronization of chaos. Phys. Lett. A 283, 109–112 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  56. J.M. Gonzáles-Miranda, Synchronization and Control of Chaos (Imperial College Press, London, 2004)

    Google Scholar 

  57. B.R. Hunt, E. Ott, J.A. Yorke, Differentiable generalized synchronization of chaos. Phys. Rev. E 55(4), 4029–4034 (1997)

    MathSciNet  ADS  Google Scholar 

  58. L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816–1819 (1996)

    ADS  Google Scholar 

  59. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990)

    MathSciNet  ADS  MATH  Google Scholar 

  60. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980–994 (1995)

    ADS  Google Scholar 

  61. M. Ding, E. Ott, Enhancing synchronism of chaotic systems. Phys. Rev. E 49, R945–R948 (1994)

    ADS  Google Scholar 

  62. T. Kapitaniak, Synchronization of chaos using continuous control. Phys. Rev. E 50, 1642–1644 (1994)

    ADS  Google Scholar 

  63. K.M. Cuomo, A.V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    ADS  Google Scholar 

  64. L.M. Pecora, T.L. Carroll, Driving systems with chaotic signals. Phys. Rev. A 44, 2374–2383 (1991)

    ADS  Google Scholar 

  65. V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 29, 795–803 (1986)

    MathSciNet  ADS  Google Scholar 

  66. T. Kapitaniak, Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics (Butler and Tanner Ltd., Frome, 1996)

    MATH  Google Scholar 

  67. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)

    MATH  Google Scholar 

  68. A. Azevedo, S.M. Rezende, Controlling chaos in spin-wave instabilities. Phys. Rev. Lett. 66(10), 1342–1345 (1991)

    ADS  Google Scholar 

  69. G.L. Baker, Control of the chaotic driven pendulum. Am. J. Phys. 63, 832–838 (1995)

    ADS  Google Scholar 

  70. S. Bielawski, D. Derozier, P. Glorieux, Controlling unstable periodic orbits by a delayed continuous feedback. Phys. Rev. E 49, R971–R974 (1994)

    ADS  Google Scholar 

  71. W.L. Ditto, S.N. Tauseo, M.L. Spano, Experimental control of chaos. Phys. Rev. Lett. 65(26), 3211–3214 (1990)

    ADS  Google Scholar 

  72. A. Garfinkel, M.L. Spano, W.L. Ditto, J.N. Weiss, Controlling cardiac chaos. Science 257, 1230–1233 (1992)

    ADS  Google Scholar 

  73. S. Hayes, C. Grebogi, E. Ott, Communicating with chaos. Phys. Rev. Lett. 70(20), 3031–3034 (1993)

    ADS  Google Scholar 

  74. R. Meucci, W. Gadomski, M. Ciofini, F.T. Arecchi, Experimental control of chaos by means of weak parametric perturbations. Phys. Rev. E 49(4), R2528–R2531 (1994)

    ADS  Google Scholar 

  75. S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Controlling chaos in the brain. Nature 370, 615–620 (1994)

    ADS  Google Scholar 

  76. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    MathSciNet  ADS  MATH  Google Scholar 

  77. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Rev. A 170, 421–428 (1992)

    Google Scholar 

  78. G. Herrmann, A robust delay adaptation scheme for Pyragas’ chaos control method. Phys. Lett. A 287(3–4), 245–256 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  79. J.A. Holyst, K. Urbanowicz, Chaos control in economical model by time delayed feedback method. Phys. A: Stat. Mech. Appl. 287(3–4), 587–598 (2000)

    Google Scholar 

  80. M. Allais, The economic science of today and global disequilibrium, in Global Disequilibrium in the World Economy, ed. by M. Baldassarry, J. McCallum, R.A. Mundell (Macmillan, Basingstoke, 1992)

    Google Scholar 

  81. J.A. Holyst, T. Hagel, G. Haag, W. Weidlich, How to control a chaotic economy? J. Evol. Econ. 6(1), 31–42 (1996)

    Google Scholar 

  82. L. Kaas, Stabilizing chaos in a dynamic macroeconomic model. J. Econ. Behav. Organ. 33, 313–332 (1998)

    Google Scholar 

  83. M. Kopel, Improving the performance of an economic system: controlling chaos. J. Evol. Econ. 7, 269–289 (1997)

    Google Scholar 

  84. G. Feichtinger, Nonlinear threshold dynamics: further examples for chaos in social sciences, in Economic Evolution and Demographic Change, ed. by G. Haag, U. Mueller, K.G. Troitzsh (Springer, Berlin, 1992)

    Google Scholar 

  85. K. Aihara, G. Matsumoto, Chaotic oscillations and bifurcations in squid giant axons, in Chaos, ed. by A. Holden (Manchester University Press, Manchester, 1986), pp. 257–269

    Google Scholar 

  86. K. Aihara, T. Takabe, M. Toyoda, Chaotic neural networks. Phys. Lett. A 144, 333–340 (1990)

    MathSciNet  ADS  Google Scholar 

  87. W.J. Freeman, Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurc. Chaos 2(3), 451–482 (1992)

    MathSciNet  MATH  Google Scholar 

  88. J. Guckenheimer, R.A. Oliva, Chaos in the Hodgkin-Huxley model. SIAM J. Appl. Dyn. Syst. 1(1), 105–114 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  89. J. Kuroiwa, N. Masutani, S. Nara, K. Aihara, Chaotic wandering and its sensitivity to external input in a chaotic neural network, in Proceedings of the 9th International Conference on Neural Information Processing (ICONIP’O2), ed. by L. Wang, J.C. Rajapakse, K. Fukushima, S.Y. Lee, X. Yao (Orchid Country Club, Singapore, 2002), pp. 353–357

    Google Scholar 

  90. S. Nara, P. Davis, Chaotic wandering and search in a cycle-memory neural network. Prog. Theor. Phys. 88(5), 845–855 (1992)

    ADS  Google Scholar 

  91. S. Nara, P. Davis, M. Kawachi, H. Totsuji, Chaotic memory dynamics in a recurrent neural network with cycle memories embedded by pseudo-inverse method. Int. J. Bifurc. Chaos 5(4), 1205–1212 (1995)

    MATH  Google Scholar 

  92. A. Potapov, M.K. Ali, Robust chaos in neural networks. Phys. Lett. A 277(6), 310–322 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  93. M. Shibasaki, M. Adachi, Response to external input of chaotic neural networks based on Newman-Watts model, in The 2012 International Joint Conference on Neural Networks, ed. by J. Liu, C. Alippi, B. Bouchon-Meunier, G.W. Greenwood, H.A. Abbass (Brisbane, 2012), pp. 1–7

    Google Scholar 

  94. C.A. Skarda, W.J. Freeman, How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10(2), 161–173 (1987)

    Google Scholar 

  95. I. Tsuda, Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32, 167–184 (1991)

    Google Scholar 

  96. X. Wang, Period-doublings to chaos in a simple neural network: an analytical proof. Complex Syst. 5, 425–441 (1991)

    MATH  Google Scholar 

  97. Q. Liu, S. Zhang, Adaptive lag synchronization of chaotic Cohen-Grossberg neural networks with discrete delays. Chaos 22(3), 033123 (2012)

    ADS  Google Scholar 

  98. W. Lu, T. Chen, Synchronization of coupled connected neural networks with delays. IEEE Trans. Circuits Syst.-I: Regul. Pap. 51(12), 2491–2503 (2004)

    MathSciNet  Google Scholar 

  99. W. Yu, J. Cao, W. Lu, Synchronization control of switched linearly coupled neural networks with delay. Neurocomputing 73(4–6), 858–866 (2010)

    Google Scholar 

  100. R. Graves, New Larousse Encyclopedia of Mythology (Prometheus Press/Hamlyn, New York, 1968)

    Google Scholar 

  101. M. Bushev, Synergetics: Chaos, Order Self-Organization (World Scientific, Singapore, 1994)

    Google Scholar 

  102. I. Prigogine, I. Stengers, Order Out of Chaos: Man’s Dialogue with Nature (Bantam Books, Toronto, 1984)

    Google Scholar 

  103. F.C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists and Engineers (Wiley, Hoboken, 2004)

    Google Scholar 

  104. I. Kant, Universal Natural History and Theory of the Heavens (Richer Resources Publications, Virginia, 2008)

    Google Scholar 

  105. G. Nicolis, I. Prigogine, Exploring Complexity: An Introduction (W.H. Freeman, New York, 1989)

    Google Scholar 

  106. F. Durrenmatt, The Physicists (Grove, New York, 1964)

    Google Scholar 

  107. M.W. Hirsh, The dynamical systems approach to differential equations. Bull. Am. Math. Soc. 11, 1–64 (1984)

    Google Scholar 

  108. R. Abraham, Predictions for the Future of Differential Equations. Lecture Notes in Mathematics, vol. 206 (Springer, Berlin, 1971)

    Google Scholar 

  109. R. Thom, Stabilité Structurelle et Morphogénèse (W.A. Benjamin, New York, 1972)

    Google Scholar 

  110. C.W. Hegel, Lectures on the History of Philosophy (Humanities Press, New York, 1974)

    Google Scholar 

  111. H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices (Springer, Berlin, 1983)

    Google Scholar 

  112. A.A. Andronov, A.A. Vitt, C.E. Khaikin, Theory of Oscillations (Pergamon Press, Oxford, 1966)

    Google Scholar 

  113. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971)

    Google Scholar 

  114. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (Wiley, Chichester, 2002)

    Google Scholar 

  115. J.A. Davies, Mechanisms of Morphogenesis: The Creation of Biological Form (Elsevier Academic Press, Amsterdam, 2005)

    Google Scholar 

  116. R. Thom, Mathematical Models of Morphogenesis (Ellis Horwood Limited, Chichester, 1983)

    MATH  Google Scholar 

  117. B.M. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982)

    MATH  Google Scholar 

  118. B.M. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977)

    MATH  Google Scholar 

  119. B. Branner, L. Keen, A. Douady, P. Blanchard, J.H. Hubbard, D. Schleicher, R.L. Devaney, in Complex Dynamical Systems: The Mathematics Behind Mandelbrot and Julia Sets, ed. by R.L. Devaney (American Mathematical Society, Providence, 1994)

    Google Scholar 

  120. J. Milnor, Dynamics in One Complex Variable (Princeton University Press, Princeton, 2006)

    MATH  Google Scholar 

  121. H.O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer, New York, 2004)

    Google Scholar 

  122. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, New York, 2003)

    Google Scholar 

  123. M. Akhmet, Principles of Discontinuous Dynamical Systems (Springer, New York, 2010)

    MATH  Google Scholar 

  124. M.U. Akhmet, Creating a chaos in a system with relay. Int. J. Qual. Theory Differ. Equ. Appl. 3, 3–7 (2009)

    MATH  Google Scholar 

  125. M.U. Akhmet, Dynamical synthesis of quasi-minimal sets. Int. J. Bifur. Chaos 19, 2423–2427 (2009)

    MathSciNet  MATH  Google Scholar 

  126. M.U. Akhmet, Shadowing and dynamical synthesis. Int. J. Bifur. Chaos 19, 3339–3346 (2009)

    MathSciNet  MATH  Google Scholar 

  127. M.U. Akhmet, M.O. Fen, Chaotic period-doubling and OGY control for the forced Duffing equation. Commun. Nonlinear Sci. Numer. Simul. 17, 1929–1946 (2012)

    MathSciNet  ADS  MATH  Google Scholar 

  128. M.U. Akhmet, M.O. Fen, The period-doubling route to chaos in the relay system, in Proceedings of Dynamic Systems and Applications, vol. 6, ed. by G.S. Ladde, N.G. Medhin, C. Peng, M. Sambandham (Dynamic Publisher Inc., Atlanta, 2012), pp. 22–26

    Google Scholar 

  129. K. Ikeda, K. Matsumoto, K. Otsuka, Maxwell-Bloch turbulence. Prog. Theor. Phys. Suppl. 99, 295 (1989)

    MathSciNet  ADS  Google Scholar 

  130. K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Phys. D 41, 137–172 (1990)

    MathSciNet  MATH  Google Scholar 

  131. K. Kaneko, Globally coupled circle maps. Phys. D 54, 5–19 (1991)

    MathSciNet  MATH  Google Scholar 

  132. K. Kaneko, I. Tsuda, Complex Systems: Chaos and Beyond, A Constructive Approach with Applications in Life Sciences (Springer, Berlin, 2000)

    Google Scholar 

  133. K. Kaneko, I. Tsuda, Chaotic itinerancy. Chaos 13, 926–936 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  134. T. Sauer, Chaotic itinerancy based on attractors of one-dimensional maps. Chaos 13, 947–952 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  135. I. Tsuda, Dynamic link of memory–chaotic memory map in nonequilibrium neural networks. Neural Netw. 5, 313–326 (1992)

    MathSciNet  Google Scholar 

  136. W.J. Freeman, J.M. Barrie, Chaotic oscillations and the genesis of meaning in cerebral cortex, in Temporal Coding in the Brain, ed. by G. Buzsáki, R. Llinás, W. Singer, A. Berthoz, Y. Christen (Springer, Berlin, 1994), pp. 13–37

    Google Scholar 

  137. P. Kim, T. Ko, H. Jeong, K.J. Lee, S.K. Han, Emergence of chaotic itinerancy in simple ecological systems. Phys. Rev. E 76, 1–4 (2007)

    Google Scholar 

  138. L.O. Chua, Chua’s circuit: ten years later. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E77-A, 1811–1822 (1994)

    Google Scholar 

  139. T. Kapitaniak, L.O. Chua, Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 477–482 (1994)

    MathSciNet  MATH  Google Scholar 

  140. H.W. Lorenz, Nonlinear Dynamical Economics and Chaotic Motion (Springer, New York, 1993)

    MATH  Google Scholar 

  141. J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific Publishing, Singapore, 2010)

    Google Scholar 

  142. T. Kapitaniak, Transition to hyperchaos in chaotically forced coupled oscillators. Phys. Rev. E 47, R2975–R2978 (1993)

    ADS  Google Scholar 

  143. T. Kapitaniak, L.O. Chua, G. Zhong, Experimental hyperchaos in coupled Chua’s circuits. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 41, 499–503 (1994)

    Google Scholar 

  144. J.L. Schiff, Cellular Automata: A Discrete View of the World (Wiley, Hoboken, 2008)

    Google Scholar 

  145. S. Smale, A mathematical model of two cells via Turing’s equation, in Some Mathematical Questions in Biology, V, Proceedings of the Seventh Symposium on Mathematical Biology, Mathematics and Life Sciences, vol. 6 (American Mathematical Society, Mexico, 1973), pp. 15–26

    Google Scholar 

  146. F. Drubi, S. Ibáñez, J.A. Rodriguez, Coupling leads to chaos. J. Differ. Equ. 239(2), 371–385 (2007)

    ADS  MATH  Google Scholar 

  147. F. Drubi, S. Ibáñez, J.A. Rodriguez, Singularities and chaos in coupled systems. Bull. Belg. Math. Soc. Simon Stevin 15(5), 797–808 (2008)

    MathSciNet  MATH  Google Scholar 

  148. F. Drubi, S. Ibáñez, J.A. Rodriguez, Hopf-pitchfork singularities in coupled systems. Phys. D 240(9–10), 825–840 (2011)

    MathSciNet  MATH  Google Scholar 

  149. W.-J. Yuan, X.-S. Luo, P.-Q. Jiang, B.-H. Wang, J.-Q. Fang, Transition to chaos in small-world dynamical network. Chaos Solitons Fractals 37(3), 799–806 (2008)

    ADS  Google Scholar 

  150. H. Haken, Information and Self-Organization: A Macroscopic Approach to Complex Systems (Springer, Berlin, 1988)

    MATH  Google Scholar 

  151. H. Haken, Brain Dynamics, Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise (Springer, Berlin, 2002)

    MATH  Google Scholar 

  152. M.A. Vorontsov, W.B. Miller, Self-Organization in Optical Systems and Applications in Information Technology (Springer, Berlin, 1998)

    Google Scholar 

  153. P. Holmes, Poincaré, celestial mechanics, dynamical-systems theory and “chaos”. Phys. Rep., Rev. Sect. Phys. Lett. 193, 137–163 (1990)

    Google Scholar 

  154. L. Shilnikov, Bifurcations and strange attractors, in Proceedings of the International Congress of Mathematicians, vol. III (Higher Education Press, Beijing, 2002), pp. 349–372

    Google Scholar 

  155. T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions (Springer, New York, 1975)

    MATH  Google Scholar 

  156. J.B. Rosser Jr., From Catastrophe to Chaos: A General Theory of Economic Discontinuities, 2nd edn. (Kluwer Academic Publishers, Norwell, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Akhmet .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akhmet, M., Fen, M.O. (2016). Introduction. In: Replication of Chaos in Neural Networks, Economics and Physics. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47500-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47500-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47499-0

  • Online ISBN: 978-3-662-47500-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics