Skip to main content

Introduction to Neural Networks

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 34))

Abstract

Analog circuits have played a very important role in the development of modern electronic technology. Even in our digital computer era, analog circuits still dominate such fields as communications, power, automatic control, audio, and video electronics because of their real-time signal processing capabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Rojas, Neural networks: A systematic introduction, Springer (1996)

    Google Scholar 

  3. A. Brown, Nerve Cells and Nervous Systems (Springer, Berlin, 1991)

    Book  Google Scholar 

  4. J. Horgan, Can science explain consciousness? Sci. Am. 271(1), 88–94 (1994)

    Article  Google Scholar 

  5. P. McCorduck, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, CRC Press (2004)

    Google Scholar 

  6. J. Rosser, Highlights of the history of the Lambda-calculus. Ann. Hist. Comput. 6(4), 337–349 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Turing, On computable numbers, with an application to the Entscheidungs problem. Proc. Lond. Math. Soc. 42, 230–265 (1937)

    Article  MathSciNet  Google Scholar 

  9. R. Rojas, Who invented the computer?-The debate from the viewpoint of computer architecture, in W. Gautschi (ed.), Mathematics of Computation 1943–1993, pp. 361–366 (1994). (AMS, Proceedings of Symposia on Applied Mathematics, 1994)

    Google Scholar 

  10. M. Croarken, Early Scientific Computing in Britain (Clarendon Press, Oxford, 1990)

    MATH  Google Scholar 

  11. A. Hodges, Alan Turing: The Enigma of Intelligence (Counterpoint, London, 1983)

    MATH  Google Scholar 

  12. N. Stern, John von Neumann’s influence on electronic digital computing, 1944–1946. Ann. Hist. Comput. 2(4), 349–361 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Steward, Principles of Cellular, Molecular, and Developmental Neuroscience (Springer, New York, 1989)

    Book  Google Scholar 

  14. S. Hameroff, Ultimate Computing-Biomolecular Consciousness and Nanotechnology (North-Holland, Amsterdam, 1987)

    Google Scholar 

  15. S. Hameroff, J. Dayhoff, R. Lahoz-Beltra, A. Samsonovich, S. Rasmussen, Conformational automata in the cytoskeleton. Computer 25(11), 30–39 (1992)

    Article  Google Scholar 

  16. F. Crick, Astonishing Hypothesis: The Scientific Search for the Soul (Charles Scribner’s Sons, New York, 1994)

    Google Scholar 

  17. P. Milner, The Mind and Donald O. Hebb, Sci. Am. 268(1), 124–129 (1993)

    Article  Google Scholar 

  18. T. Kohonen, Correlation matrix memories. IEEE Trans. Comput. 21, 353–359 (1972)

    Article  MATH  Google Scholar 

  19. L. Cooper, A possible organization of animal memory and learning, in Proceedings of the Nobel Symposium on Collective Properties of Physical Systems, ed. by B. Lundquist, S. Lundquist (Academic Press, New York, 1973), pp. 252–264

    Google Scholar 

  20. P. Kanerva, Sparse Distributed Memory (MIT Press, Cambridge, 1988)

    Google Scholar 

  21. Y. Kamp, M. Hasler, Recursive Neural Networks for Associative Memory (Wiley, New York, 1990)

    MATH  Google Scholar 

  22. H. Haken, Information and Self-Organization (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  23. B. Kosko, Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18, 49–60 (1988)

    Article  MathSciNet  Google Scholar 

  24. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  25. L. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Amit, Modeling Brain Function: The World of Attractor Neural Networks (Cambridge University Press, Cambridge, UK, 1989)

    Book  MATH  Google Scholar 

  27. E. Ising, Beitrag zur theorie des ferromagnetismus. Zeitschrift fur Physik 31(253), 253–258 (1925)

    Article  Google Scholar 

  28. J. Bruck, On the convergence properties of the Hopfield model. Proc. IEEE 78(10), 1579–1585 (1990)

    Article  Google Scholar 

  29. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

    Article  Google Scholar 

  30. J. Hopfield, D. Tank, Neural computations of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985)

    MathSciNet  MATH  Google Scholar 

  31. J. Bruck, J. Goodman, On the power of neural networks for solving hard problems. J. Complex. 6, 129–135 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Farhat, D. Psaltis, A. Prata, E. Paek, Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985)

    Article  Google Scholar 

  33. B. Muller, J. Reinhardt, T.M. Strickland, Neural Networks: An Introduction, 2nd edn. (Springer-Verlag, Berlin, 1995)

    Book  Google Scholar 

  34. E. Gardner, Maximum storage capacity in neural networks. Europhys. Lett. 4, 481–485 (1987)

    Article  Google Scholar 

  35. J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City, CA, 1991)

    Google Scholar 

  36. D. Amit, H. Gutfreund, H. Sompolinsky, Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55(14), 1530–1533 (1985)

    Article  Google Scholar 

  37. D. Stein, Lectures in the Sciences of Complexity (Addison-Wesley, Redwood City, CA, 1989)

    MATH  Google Scholar 

  38. D. Stein, Spin glasses. Sci. Am. 261(1), 36–43 (1989)

    Article  Google Scholar 

  39. E. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice (Prentice-Hall, Englewood Cliffs, 1977)

    Google Scholar 

  40. A. Gibbons, W. Rytter, Efficient Parallel Algorithms (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  41. G. Wilson, G. Pawley, On the stability of the traveling salesman problem algorithm of Hopfield and tank. Biol. Cybern. 58, 63–70 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Johnson, More approaches to the traveling salesman guide. Nature 330(6148), 525–525 (1987)

    Article  Google Scholar 

  43. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem. Operations Res. 21, 498–516 (1973)

    Article  MathSciNet  Google Scholar 

  44. B. Sheu, B. Lee, C.F. Chang, Hardware annealing for fast retrieval of optimal solutions in Hopfield neural networks. International Joint Conference on Neural Networks, Seattle, IEEE Press II, 327–332 (1991)

    Google Scholar 

  45. Y. Abu-Mostafa, Neural networks for computing?, in Neural Networks for Computing, J.S. Denker, (ed.), America Institute of Physics, New York, vol. 151, pp. 1–6 (1986)

    Google Scholar 

  46. Y. Abu-Mostafa, J. St Jacques, Information capacity of the Hopfield model. IEEE Trans. Inform. Theory 31(4), 461–464 (1985)

    Article  MATH  Google Scholar 

  47. D. Psaltis, K. Wagner, D. Brady, Learning in optical neural computers. SCIVAL III, 549–555 (1987)

    Google Scholar 

  48. B. Kosko, Adaptive bidirectional associative memories. Appl. Opt. 26(23), 4847–4860 (1987)

    Article  Google Scholar 

  49. S. Grossberg, Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw. 1, 17–61 (1988)

    Article  Google Scholar 

  50. S. Grossberg, Behavioral contrast in short term memory: serial binary memory models or paraller continuous memory models? J. Math. Psychol. 3, 199–219 (1978)

    Article  Google Scholar 

  51. J.A. Anderson, J.W. Silverstein, S.R. Ritz, R.S. Jones, Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychol. Rev. 84, 413–451 (1977)

    Google Scholar 

  52. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985)

    Google Scholar 

  53. F. Ratliff, H.K. Hartline, W.H. Miller, Spatial and temporal aspects of retinal inhibitory interactions. J. Opt. Soc. Am. 53, 110–120 (1963)

    Google Scholar 

  54. A.J. Lotka, Elements of mathematical biology (Dover, New York, 1956)

    Google Scholar 

  55. M.E. Gilpin, F.J. Ayala, Global models of growth and competition, in Proceedings of the National Academy of Sciences, vol. 70, pp. 3590–3593 (1973)

    Google Scholar 

  56. M. Eigen, P. Schuster, The hypercycle: A principle of natural self-organization, B: The abstract hypercycle. Naturwissenshaften 65, 7–41 (1978)

    Google Scholar 

  57. M.A. Cohen, S. Grossberg, Neural dynamics of speech and language coding: developmental programs, perceptual grouping, and competition for short-term memory. Hum. Neurobiol. 5, 1–22 (1986)

    Google Scholar 

  58. M.A. Cohen, S. Grossberg, Masking fields: A massively parallel neural architecture for learning, recognizing, and predicting multiple groupings of patterned data. Appl. Opt. 26, 1866–1891 (1987)

    Google Scholar 

  59. M. Cohen, S. Grossberg, Absolute stability of global pattern formation and paralled memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 13, 815–826 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  60. S. Grossberg, Associative and competitive principles of learning and development: The temporal unfolding and stability of STM and LTM patterns, in Competition and Cooperation in Neural Networks, ed. by S.I. Amari, M. Arbib (Springer, New York, 1982), p. 1982

    Google Scholar 

  61. M. Cohen, Sustained oscillations in a symmetric cooperative-competitive neural network: Disproof of a conjecture about content addressable memory. Neural Netw. 1, 217–221 (1988)

    Article  Google Scholar 

  62. S. Ellias, S. Grossberg, Pattern formation, contrast control, and oscillations in the short-term memory of shunting on-center off-surround networks. Biol. Cybern. 20, 69–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Grossberg, Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  64. S. Grossberg, Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biol. Cybern. 23, 187–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Grossberg, Contour enhancement, short-term memory, and constancies in reverberating neural networks. Stud. Appl. Math. 52, 213–257 (1973)

    MathSciNet  MATH  Google Scholar 

  66. J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, Information processing capacity of dynamical systems. Sci. Rep., 2, 00514-13 (2012)

    Google Scholar 

  67. O. White, D. Lee, H. Sompolinsky, Short-term memory in orthogonal neural networks. Phys. Rev. Lett. 92(14), 148102 (2002)

    Article  Google Scholar 

  68. M. Hermans, B. Schrauwen, Memory in linear recurrent neural networks in continuous time. Neural Netw. 23(3), 341–355 (2010)

    Article  Google Scholar 

  69. S. Gangulia, D. Huhc, H. Sompolinsky, Memory traces in dynamical systems. Proc. Natl. Acad. Sci. USA 105, 18970–18975 (2008)

    Article  Google Scholar 

  70. S. Boyd, L. Chua, Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  71. L. Appeltant, M. Soriano, Q. Van der Sande, J. Danckaert et al., Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468–472 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z., Liu, Z., Zheng, C. (2016). Introduction to Neural Networks. In: Qualitative Analysis and Control of Complex Neural Networks with Delays. Studies in Systems, Decision and Control, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47484-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47484-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47483-9

  • Online ISBN: 978-3-662-47484-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics