Skip to main content

Fermentative Alkoholerzeugung und -nutzung

  • Chapter
  • First Online:
Energie aus Biomasse

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Rakopoulos D, Rakopoulos C, Giakoumis E, Dimaratos A, Kyritsis D (2010) Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Conversion Manag 51:1989–1997

    Article  Google Scholar 

  2. Zverlov V, Berezina O, Velikodvorskaya G, Schwarz W (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Article  Google Scholar 

  3. Bankar SB, Jurgens G, Survase SA, Ojamo H, Granström T (2014) Enhanced isopropanol-butanol-ethanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792. Fuel 136:226–232

    Article  Google Scholar 

  4. Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  Google Scholar 

  5. Ezeji T, Qureshi N, Blaschek H (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115:179–187

    Article  Google Scholar 

  6. Lemmel S, Datta R, Frankiewicz J (1986) Fermentation of xylan by Clostridium acetobutylicum. Enzyme Microbial Technol 8:217–221

    Article  Google Scholar 

  7. Maddox I, Qureshi N, Roberts-Thomson K (1995) Production of acetone-butanol-ethanol from concentrated substrate using clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochem 30:209–215

    Google Scholar 

  8. Maddox IS (2013) The Acetone-Butanol-Ethanol Fermentation: Recent Progress in Technology. Biotechnol Genetic Eng Rev 7:189–220

    Article  Google Scholar 

  9. Wu H, Nithyanandan K, Zhou N, Lee TH, Fon F, Lee C, Zhang C (2015) Impacts of acetone on the spray combustion of Acetone-Butanol-Ethanol (ABE)-Diesel blends under low ambient temperature. Fuel 142:109–116

    Article  Google Scholar 

  10. Friedl A, Qureshi N, Maddox IS (1991) Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol Bioeng 38:518–527

    Article  Google Scholar 

  11. Ji X-J, Huang H, Ouyang P-K (2011) Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol Adv 29:351–364

    Article  Google Scholar 

  12. LanzaTech (2014) Executive Summary. www.lanzatech.com/wp-content/uploads/2014/05/LanzaTech_Ex_Summary_8.5x11_05_09_2014.pdf. Zugegriffen: 06.11.2014

  13. Kreipe H (1981) Getreide und Kartoffelbrennerei, Handbuch der Getränketechnologie. Eugen Ulmer, Stuttgart

    Google Scholar 

  14. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund M (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  Google Scholar 

  15. Friedl A (2012) Bioethanol from Starch. In: Encyclopedia of Sustainability Science and Technology. Springer, New York, S 987–1001

    Book  Google Scholar 

  16. Roehr M (2001) The Biotechnology of Ethanol: Classical and Future Applications. Wiley-VCH, Weinheim

    Google Scholar 

  17. Dörfler J, Amorim HV (2007) Applied bioethanol technology in Brazil. Sugar Industry / Zuckerindustrie 132(9):694–697

    Google Scholar 

  18. Adaptiert nach Firmeninformation von Vogelbusch

    Google Scholar 

  19. Dechema eV (1981) Chemistry Data Series, Vol. I, Part 1a. DECHEMA, Frankfurt a M, S 133

    Google Scholar 

  20. Kirschbaum E (1969) Destillier- und Rektifiziertechnik, 4. Aufl. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  21. Kosaric N (1996) Ethanol – Potential Source of Energy and Chemical Products. In: Rehm HJ, Reed G (Hrsg) Biotechnology, 2. Aufl. VCH, Weinheim

    Google Scholar 

  22. Kaltschmitt M, Reinhardt GA (Hrsg) (1997) Nachwachsende Energieträger – Grundlagen, Verfahren, ökologische Bilanzierung. Vieweg, Braunschweig/Wiesbaden

    Google Scholar 

  23. Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresource Technol 151:69–77

    Article  Google Scholar 

  24. Laberge DE, Marchylo BA (1983) Heterogenity of the β-Amylase Enzymes of Barley. J Am Soc Brew Chem 41:120–122

    Google Scholar 

  25. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  Google Scholar 

  26. Wisselink HW, van Maris AJA, Pronk JT (2013) Pentose and glucose fermenting yeast cell. US Patent, US2013273601 (A1)

    Google Scholar 

  27. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1–11

    Article  Google Scholar 

  28. Talebina (2010)

    Google Scholar 

  29. van Groenestijn J (2013) Pretreatment of wheat straw using superheated steam. Biofuels Int 7(2):68–69

    Google Scholar 

  30. Alvira P, Tomas-Pejo E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol 101:4851–4861

    Article  Google Scholar 

  31. Lenihan P, Orozco A, O’Neill E, Ahmad M, Rooney D, Walker G (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403

    Article  Google Scholar 

  32. Funk H, Schmoltzi M (1985) Technische und ökonomische Aspekte der Verwendungsalternativen von Äthanol im Kraftstoffsektor IflM Arbeitsbericht, Bd 85/3. Institut für landwirtschaftliche Marktforschung, Bundesforschungsanstalt für Landwirtschaft, Braunschweig-Völkenrode

    Google Scholar 

  33. Adaptiert nach Firmeninformation von Swiss Combi

    Google Scholar 

  34. Galbe M et al (2007) Process engineering economics of bioethanol production. Adv Biochem Eng/Biotechnol 108:303–327

    Article  Google Scholar 

  35. Coskata Inc (2014) Information auf der Firmenhomepage. www.coskata.com. Zugegriffen: 06.11.2014

  36. Duff SJB, Murray WD (1998) Bioconversion of forest products industry waste zellulosics to fuel ethanol: a review. Bioresource Technol 55(6):631–636

    Google Scholar 

  37. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technol 96:1994–2006

    Article  Google Scholar 

  38. Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595

    Article  Google Scholar 

  39. Liew FM, Köpke M, Simpson SD (2013) Gas fermentation for commercial biofuels production. In: Fang Z (Hrsg) Liquid, gaseous and solid biofuels-conversion techniques. InTech, doi: 10.5772/52164

    Google Scholar 

  40. Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Rev 15:4255–4273

    Article  Google Scholar 

  41. Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696

    Article  Google Scholar 

  42. Daniell J, Köpke M, Simpson SD (2012) Commercial Biomass Syngas Fermentation. Energies 5:5372–5417

    Article  Google Scholar 

  43. Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake H (2000) Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Systematic Evol Microbiol 50:537–546

    Article  Google Scholar 

  44. Liou J-C, Balkwill D, Drake G, Tanner R (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Systematic Evol Microbiol 55:2085–2091

    Article  Google Scholar 

  45. Phillips J, Clausen E, Gaddy J (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45–46:145–157

    Article  Google Scholar 

  46. Butzke C, Misselhorn K (1992) Zur Acroleinminimierung in Rohsprit. Branntweinwirtschaft 132:27–30

    Google Scholar 

  47. Rajagopalan S, Ponnampalam E, McCalla D, Stowers M (2005) Enhancing profitability of dry mill ethanol plants. Appl Biochem Biotechnol 120:37–50

    Article  Google Scholar 

  48. Singh V, Johnston D (2009) Fractionation technologies for dry-grind corn processing. In: The Alcohol Textbook: A Reference for the Beverage, Fuel and Industrial Alcohol Industries. University Press, Nottingham

    Google Scholar 

  49. Kadam KL, Camobreco VJ, Glazebrook BE, Forrest LH, Jacobson WA, Simeroth DC, Blackburn WJ, Nehoda KC (1999) Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass. National Renewable Energy Laboratory, Colorado, USA

    Book  Google Scholar 

  50. Mosier NS (2013) Fundamentals of Aqueous Pretreatment of Biomass. In: Wyman CE (Hrsg) Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. John Wiley & Sons, Ltd, Chichester, UK

    Google Scholar 

  51. Bouchard J, Nguyen TS, Chornet E, Overend RP (1990) Analytical methodology for biomass pretreatment – part 1. Solid residues, Biomass 23(4):243–261

    Article  Google Scholar 

  52. Garrote G, Domínguez H, Parajó JC (2002) Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal treatments on the basis of the severity factor. Process Biochem 37(10):1067–1073

    Article  Google Scholar 

  53. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    Google Scholar 

  54. Schädel C, Blöchl A, Richter A, Hoch G (2010) Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem PPB 48(1):1–8

    Article  Google Scholar 

  55. Helmerius J, von Walter JV, Rova U, Berglund KA, Hodge DB (2010) Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties. Bioresource Technol 101(15):5996–6005

    Article  Google Scholar 

  56. Gairing M (1986) Ethanol – Einsatz in Fahrzeugmotoren aus der Sicht der Automobilindustrie. Kolloquium „Kurzfristige Möglichkeiten zum Einsatz nachwachsender Rohstoffe“. Ministerium für Ernährung, Landwirtschaft, Umwelt und Forsten, Stuttgart

    Google Scholar 

  57. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410

    Article  Google Scholar 

  58. Kurkijärvi A, Lehtonen J, Linnekoski J (2014) Novel dual extraction process for acetone-butanol-ethanol fermentation. Separation and Purification Technol 124:18–25

    Article  Google Scholar 

  59. Friedl A (1990) Produktabtrennung bei der Ethanol-Fermentation und bei der Aceton-Butanol-Fermentation. Dissertation, TU Wien

    Google Scholar 

  60. INEOS Bio (2013) INEOS US Bio Process Description Brochure. www.ineosbio.com. Zugegriffen: 05.11.2014

  61. Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technol 102:6494–6501

    Article  Google Scholar 

  62. Hsu T-A (1996) Pretreatment of Biomass. In: Wyman C (Hrsg) Handbook on Bioethanol: Production and Utilization. Taylor and Francis, Washington DC

    Google Scholar 

  63. GEA-Wiegand, Karlsruhe

    Google Scholar 

  64. Madson PW (2003) Ethanol distillation: the fundamentals. In: The Alcohol Textbook, 4. Aufl. University Press, Nottingham

    Google Scholar 

  65. Shao P, Kumar A (2009) Separation of 1-butanol/2,3-butanediol using ZSM-5 zeolite-filled polydimethylsiloxane membrandes. Journal of Membrane Science 339:143–150

    Google Scholar 

  66. Qureshi N, Meagher MM, Hutkins RW (1994) Recovery of 2,3-butanediol by vacuum membrane distillation. Separation Science and Technology 29(13):1733–1748

    Google Scholar 

  67. Madson PW, Lococo DB (2000) Recovery of volatile products from dilute high-fouling process streams. Appl Biochem Biotechnol 84–86:1049–1061

    Article  Google Scholar 

  68. Qureshi N, Friedl A, Maddox I (2014) Butanol production from concentrated lactose/whey permeate: Use of pervaporation membrane to recover and concentrate product. Appl Microbiol Biotechnol 98:9859–9867

    Article  Google Scholar 

  69. Kujawski W, Zielinski (2006) Bioethanol – One Of The Renewable Energy Sources. Environ Protection Eng 32(1):143–150

    Google Scholar 

  70. Mariano AP, Qureshi N, Filho RM, Ezeji TC (2011) Bioproduction of butanol in bioreactors: New insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol Bioeng 108:1757–1765

    Article  Google Scholar 

  71. Nimcevic D, Gapes JR (2000) The acetone-butanol fermentation in pilot plant and pre-industrial scale. J Molecular Microbiol Biotechnol 2(1):15–20

    Google Scholar 

  72. Afschar AS, Vaz Rossell CE, Jonas R, Quesada Chanto A (1993) Microbial production and downstream processing of 2,3-butanediol. Journal of Biotechnology 27:317–329

    Google Scholar 

  73. Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: A review. Bioresource Technology 51:103–109

    Google Scholar 

  74. Xiu Z, Zeng A (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Google Scholar 

  75. Shao P, Kumar A (2009) Recovery of 2,3-butanediol from water by solvent extraction and pervaporation separation scheme. Journal of Membrane Science 329:160–168

    Google Scholar 

  76. Dauriat A, Gnansonou E (2007) Ethanol-based biofuels. In: Jungbluth N (Hrsg) Life Cycle Inventories of Bioenergy. econinvent-report, Bd 17. EcoInvent, Uster

    Google Scholar 

  77. Wollrab A (2009) Organische Chemie. Eine Einführung für Lehramts- und Nebenfachstudenten. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  78. Chang CD, Silvestri AJ (1977) The Conversion of Methanol and Other O-Compounds to Hydrocarbons over Zeolite Catalysts. J Catal 47:249–259

    Article  Google Scholar 

  79. Spivey JJ (1991) Dehydration Catalysts for the Methanol/Dimethyl Ether Reaction. Chem Eng Commun 110(1):123–142. doi:10.1080/00986449108939946

    Article  Google Scholar 

  80. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catal Lett 105(3–4):249–252. doi:10.1007/s10562-005-8698-1

    Article  Google Scholar 

  81. Zhang X, Wang R, Yang X, Zhang F (2008) Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater 116:210–215. doi:10.1016/j.micromeso.2008.04.004

    Article  Google Scholar 

  82. Baliban RC, Elia JA, Floudas CA, Xiao X, Zhang Z, Li J, Cao H, Ma J, Qiao Y, Hu X (2013) Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization. Ind Eng Chem Res 52(33):11436–11450. doi:10.1021/ie3034703

    Article  Google Scholar 

  83. Martens JA, Ravishankar R, Mishin IE, Jacobs PA (2000) Maßgeschneiderte Alken-Oligomerisierung mit Zeolith H-ZSM-57. Angewandte Chemie 112(23):4547–4550

    Article  Google Scholar 

  84. Wright ME, Harvey BG, Quintana RL (2008) Highly Efficient Zirconium-Catalyzed Batch Conversion of 1-Butene: A New Route to Jet Fuels. Energy & Fuels 22(5):3299–3302. doi:10.1021/ef800380b

    Article  Google Scholar 

  85. Breitmaier E, Jung G, Breitmaier-Jung (2005) Organische Chemie. Grundlagen, Stoffklassen, Reaktio-nen, Konzepte, Molekülstruktur ; zahlreiche Formeln, Tabellen, 5. Aufl. Thieme, Stuttgart

    Google Scholar 

  86. Fahim MA, Alsahhaf TA, Elkilani A (2010) Fundamentals of Petroleum Refining. Elsevier, Amsterdam

    Google Scholar 

  87. Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations. J Bioscie Bioeng 109:492–498

    Article  Google Scholar 

  88. LanzaTech (2014) Information auf der Firmenhomepage. www.lanzatech.com. Zugegriffen: 06.11.2014

  89. Kravanja P (2013) Bioethanol production from lignocellulosic biomass – Process simulation, integration and validation. Dissertation, TU Wien

    Google Scholar 

  90. Weiss KR (2013) Commercialization of a Renewable Aviation Fuel Industry in Brasil. Contribution to Ethanol Summit Sao Paulo, Jun 2013

    Google Scholar 

  91. Wright M (2012) Biomass to Alcohol to Jet/Diesel. Interne Präsentation, Australia

    Google Scholar 

  92. Johnston G (2013) Alcohol to Jet (AtJ). Contribution to Paris Air Show Paris, Jun 2013

    Google Scholar 

  93. Holmgren J (2013) Innovative Use of Industrial Waste Gases to Produce Sustainable Fuels & Chemi-cals Geelong, Australia, Feb 2013

    Google Scholar 

  94. Hull A (2012) Technology for the production of fully synthetic aviation fuels, diesel and gasoline. Contribution to Solakonferansen Stavanger, Sep 2012

    Google Scholar 

  95. Fogarty WM, Kelly CT (1979) Starch Degrading Enzymes of Microbial Origin. In: Bull MJ (Hrsg) Progress in Industrial Microbiology, Bd 15. Elsevier, Amsterdam

    Google Scholar 

  96. Harris G (1962) The Enzyme Content and Enzymatic Conversion of Malt. In: Cook AH (Hrsg) Barley and Malt – Biology, Biochemistry, Technology. Academic Press, New York

    Google Scholar 

  97. Liebmann B, Pfeffer M, Wukovits W, Bauer A, Amon T, Gwehenberger G, Narodoslawsky M, Friedl A (2007) Modelling of small-scale bioethanol plants with renewable energy supply 10th Conference on Process Integration Modelling and Optimisation for Energy Saving and Pollution Reduction, Ischia, Naples, Italy, June 2007, S 309–314 (PRES 07)

    Google Scholar 

  98. Miers SA, Carlson RW, McConnell SS, Ng HK, Wallner T (2008) Drive cycle analysis of butanol/diesel blends in a light-duty vehicle. SAE Internal 2008–01–2381

    Google Scholar 

  99. ASTM International (2014) Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons (D7566-14 A)

    Google Scholar 

  100. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignozellulose into fermentable sugars: challenges and opportunities. Biofuels Bioproducts and Biorefining 1:119–134

    Article  Google Scholar 

  101. EG-Direktive 85/536/ Council Directive 85/536/EEC of 5 December 1985 on crude-oil savings through the use of substitute fuel components in petrol

    Google Scholar 

  102. Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    Article  Google Scholar 

  103. Adaptiert nach Firmeninformation von Andritz

    Google Scholar 

  104. Adaptiert nach Firmeninformation von GIG Karasek

    Google Scholar 

  105. Aufhammer W, Pieper HJ, Sützel H, Schäfer V (1993) Eignung von Korngut verschiedener Getreidearten zur Bioethanolproduktion in Abhängigkeit von der Sorte und den Aufwuchsbedingungen. Bodenkultur 44:183–194

    Google Scholar 

  106. Ballesteros I, Negro J, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol Production from Steam-Explosion Pretreated Wheat Straw. Appl Biochem Biotechnol 496(508):129–132

    Google Scholar 

  107. Jacob C (Hrsg) Firmenunterlagen. Göppingen

    Google Scholar 

  108. Krell U, Pieper HJ (1995) Entwicklung eines Betriebsverfahrens zur acroleinfreien Alkoholproduktion aus stärkehaltigen Rohstoffen. Handbuch für die Brennerei- und Alkoholwirtschaft 42:371–391

    Google Scholar 

  109. Manners DJ, Sperra KL (1966) Studies on Carbohydrate-Metabolizing Enzymes; Part XIV: The Specifity of R-Enzyme from Malted Barley. J Inst Brew 72:360–365

    Article  Google Scholar 

  110. Marchylo BA, Kruger JE, MacGregor AW (1984) Production of Multiple Forms of α-Amylase in Germinated, Incubated, Whole, De-embryonated Wheat Kernels. Cereal Chem 61:305–310

    Google Scholar 

  111. Martin M, Grossmann IE (2011) Energy optimization of bioethanol production via gasification of switchgrass. AIChE J 57:3408–3428

    Article  Google Scholar 

  112. Matthes F (1995) Bewertung von Schlempe als Bodendünger. Handbuch für die Brennerei- und Alkoholindustrie 42:393–402

    Google Scholar 

  113. Menrad H, König A (1982) Alkoholkraftstoffe. Springer, Wien, New York

    Book  Google Scholar 

  114. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignozellulosic biomass. Biomass Technol 96:673–686

    Article  Google Scholar 

  115. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresource Technol 101:5013–5022

    Article  Google Scholar 

  116. Nanguneri SR, Hester RD (1990) Acid/Sugar Separation Using Ion Exclusion Resins: A Process Analysis and Design. Separation Sci Technol 25(13–15):1829–1842

    Article  Google Scholar 

  117. Nierhauve B (1986) Ethanol – Beimischung zu Kraftstoffen. In: Informationen für die Landwirtschaft, Kolloquium „Kurzfristige Möglichkeiten zum Einsatz nachwachsender Rohstoffe“. Ministerium für Ernährung, Landwirtschaft, Umwelt und Forsten, Stuttgart

    Google Scholar 

  118. Osteroth D (1988) Holzverzuckerung – Ein historischer Rückblick. Chemie für Labor und Betrieb 39(4):165–169

    Google Scholar 

  119. Pan X, Xie D, Kang K-Y, Yoon S-L, Saddler JN (2007) Effect of Organosolv Ethanol Pretreatment Variables on Physical Characteristics of Hybrid Poplar Substrates. Appl Biochem Biotechnol 136–140:367–378

    Google Scholar 

  120. Pieper HJ (1983) Gärungstechnologische Alkoholproduktion. In: Kling M, Wöhlbier W (Hrsg) Handels-Futtermittel, Bd 2. Eugen Ulmer, Stuttgart

    Google Scholar 

  121. Pieper HJ, Bohner X (1985) Energiebedarf, Energiekosten und Wirtschaftlichkeit verschiedener Alkoholproduktionsverfahren für Kornbranntwein unter besonderer Berücksichtigung des Schlempe-Recycling-Verfahrens. Branntweinwirtschaft 125:286–293

    Google Scholar 

  122. Quadt A (1994) Alkoholproduktion aus Roggen nach dem Hohenheimer Dispergier-Maischverfahren. Diplomarbeit, Universität Hohenheim

    Google Scholar 

  123. Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenergy 23:487–493

    Article  Google Scholar 

  124. Rau T, Thomas L, Senn T, Pieper HJ (1993) Technologische Kriterien zur Beurteilung der Industrietauglichkeit von Weizensorten unter besonderer Berücksichtigung der Alkoholproduktion. Deutsche Lebensmittelrundschau 89:208–210

    Google Scholar 

  125. Rau T (1989) Das Autoamylolytische Enzymsystem des Weizens, seine quantitative Erfassung und technologische Nutzung bei fremdenzymreduzierter Amylolyse unter besonderer Berücksichtigung der Ethanolproduktion. Dissertation, Universität Hohenheim

    Google Scholar 

  126. Rosendal P, Nielsen BH, Lange NK (1979) Stability of Bacterial α-Amylase in the Starch Liquefaction Process. Starch/Stärke 31:368–372

    Article  Google Scholar 

  127. Schmitz N (2003) Bioethanol in Deutschland Schriftenreihe Nachwachsende Rohstoffe, Bd 21, S 72

    Google Scholar 

  128. Senn T (2003) Produktion von Bioethanol als Treibstoff unter dem Aspekt der Energie-, Kosten- und Ökobilanz. FVS Fachtagung 2003, S 87–98

    Google Scholar 

  129. Senn T, Thomas L, Pieper HJ (1991) Bioethanolproduktion aus Triticale unter ausschließlicher Nutzung des korneigenen Amylasesystems. Wiss Z TH Köthen 2:53–60

    Google Scholar 

  130. Senn T, Pieper HJ (1991) Ethanol – Classical Methods. In: Rehm HJ (Hrsg) Biotechnology, 2. Aufl. Chemie, Weinheim

    Google Scholar 

  131. Stelzer T (1999) Biokraftstoffe im Vergleich zu konventionellen Kraftstoffen – Lebensweganalysen von Umweltwirkungen. Dissertation, Universität Stuttgart

    Google Scholar 

  132. Stout BA (1990) Handbook of Energy for World Agriculture. Elsevier, London, New York

    Book  Google Scholar 

  133. Sun Y, Cheng J (2002) Hydrolysis of lignozellulosic material for ethanol production: a review. Bioresource Technol 83:1–11

    Article  Google Scholar 

  134. Syassen O (1991) Situationsanalyse zur Problematik Nachwachsende Kraftstoffe. Rheinland-Pfälzisches Ministerium für Landwirtschaft, Weinbau und Forsten, Mainz

    Google Scholar 

  135. Thomas L (1991) Enzymtechnische Untersuchungen mit Triticale zur technischen Amylolyse unter besonderer Berücksichtigung der fremdenzymfreien Bioethanolproduktion. Dissertation, Universität Hohenheim

    Google Scholar 

  136. Ukpong MN, Atiyeh HK, De Lorme MJ, Liu K, Zhu X, Tanner RS, Wilkins MR, Stevenson BS (2012) Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol Bioeng 109:2720–2728

    Article  Google Scholar 

  137. Wayman M, Parekh SR (1990) Biotechnology of Biomass Conversion. Open University Press, Milton Keynes

    Google Scholar 

  138. Wooley RJ (1997) Continuos Countercurrent Chromatographic Separator for the Purification of Sugars from Biomass Hydrolyzate. Final Project Report. National Renewable Energy Laboratory, Golden, Colorado

    Book  Google Scholar 

  139. Zschoke A, Scheuermann S, Ortner J (2012) High Biofuel Blends in Aviation (HBBA) – Interim Report. Lufthansa und Wehrwissenschaftliches Institut der Bundeswehr. www.hhba.eu. Zugegriffen: 9.11.2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Friedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedl, A., Miltner, A., Neuling, U., Kaltschmitt, M. (2016). Fermentative Alkoholerzeugung und -nutzung. In: Kaltschmitt, M., Hartmann, H., Hofbauer, H. (eds) Energie aus Biomasse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47438-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47438-9_18

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47437-2

  • Online ISBN: 978-3-662-47438-9

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics