Skip to main content

Pyrolyse

  • Chapter
  • First Online:
Energie aus Biomasse

Autoren in alphabetischer Reihenfolge mit Beiträgen zum Kapitel; die Autorenzuordnung geht aus den einzelnen Unterkapiteln hervor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Broido A, Weinstein M (1971) Kinetics of solid-phase cellulose pyrolysis. In: Wiedemann (Hrsg) Proc 3rd Int Conf Thermal Anal. Birkhäuser Verlag, Basel, S 285–296

    Google Scholar 

  2. Broido A (1976) Kinetics of solid-phase cellulose pyrolysis. In: Shafizadeh F, Sarkanen K, Tillman DA (Hrsg) Thermal Uses of Properties of Carbohydrates and Lignins. Academic Press, New York, S 19–36

    Chapter  Google Scholar 

  3. Bradbury AGW, Sakai Y, Shafizadeh F (1979) A Kinetic Model for Pyrolysis of Cellulose. J Appl Polymer Sci 23:3271–3280

    Article  Google Scholar 

  4. Shafizadeh F (1982) Introduction to Pyrolysis of Biomass. J Anal Appl Pyrolysis 3:285–305

    Article  Google Scholar 

  5. Várhegyi G, Antal MJ Jr, Jakab E, Szabo P (1997) Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrolysis 42:73–87

    Article  Google Scholar 

  6. Milosavljevic I, Suuberg EM (1995) Cellulose thermal decomposition kinetics: Global mass loss kinetics. Industrial & Engineering Chemistry Research 34:1081–1091

    Article  Google Scholar 

  7. Shafidazeh F, Chin PPS (1977) Thermal Deterioration of Wood. Americal Chemical Society. Symposium Series 43:57–81

    Article  Google Scholar 

  8. Thurner F, Mann U (1981) Kinetic Investigation of Wood Pyrolysis. Industrial & Engineering Chemistry Process Design and Development 20:482–488

    Article  Google Scholar 

  9. Grønli M, Michael Jerry A Jr, Várhegyi G (1999) A round-Robin Study of Cellulose Parolysis Kinetics by Thermogravimetry. Industrial & Engineering Chemistry Research 38:2238–2244

    Article  Google Scholar 

  10. Manyà JJ, Velo E, Puigjaner L (2003) Kinetics of Biomass Pyrolysis: a Reformulated Three-Parallel-Reactions Model. Industrial & Engineering Chemistry Research 42:434–441

    Article  Google Scholar 

  11. Teng H, Wei YC (1998) Thermogravimetric Studies on the Kinetics of Rice Hull Pyrolysis and the Influence of Water Treatment. Industrial & Engineering Chemistry Research 37:3806–3811

    Article  Google Scholar 

  12. Conesa JA, Marcilla A, Caballero JA, Font R (2001) Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J Anal Appl Pyrolysis 85–59:617–633

    Article  Google Scholar 

  13. Caballero JA, Conesa JA, Font R et al (1997) Marcilla. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis 42:159–175

    Article  Google Scholar 

  14. Fisher T, Hajaligol M, Waymack B, Kellog D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62:331–349

    Article  Google Scholar 

  15. Baldi S, Dogu T, Yücel H (1993) Pyrolysis Kinetics of Lignocellulosic Materials. Industrial & Engineering Chemistry Research, 32:2573–2579

    Article  Google Scholar 

  16. Saddawi A, Jones JM, Williams A, Wójtowicz MA (2010) Kinetics of the Thermal Decomposition of Biomass. Energy & Fuels 24:1274–1282

    Article  Google Scholar 

  17. Várhegyi G, Szabo P, Antal MJ Jr (2002) Kinetics of Charcoal Devolatilization. Energy & Fuels 16:724–741

    Google Scholar 

  18. Burnham AK, Braun RL (1999) Global Kinetic Analysis of Complex Materials. Energy & Fuels 13:1–22

    Article  Google Scholar 

  19. Di Blasi C, Branca C (2001) Kinetics of Primary Product Formation from Wood Pyrolysis. Industrial & Engineering Chemistry Research 40:5547–5556

    Article  Google Scholar 

  20. Koufopanos CA, Papayannakos N, Maschio G et al (1991) Lucchesi. Modelling of the Pyrolysis of Biomass Particles. Studies on Kinetics, Thermal and Heat Transfer Effects. Canad J Chem Eng 69:907–915

    Article  Google Scholar 

  21. Barooah JN, Long VD (1976) Rates of thermal decomposition of some carbonaceous materials in a fluidized bed. Fuel 55:116–120

    Article  Google Scholar 

  22. Chan WCR, Kelbou M, Krieger BB (1985) Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 64:1505–1513

    Article  Google Scholar 

  23. Babu BV, Chaurasia AS (2004) Heat transfer and kinetics in the pyrolysis of shrinking biomass. Chemical Engineering Science 59:1999–2012

    Article  Google Scholar 

  24. Shrivastava VK, Jalan S, Jalan RK (1996) Prediction of concentration in the pyrolysis of biomass material – II. Energy Conversion and Management 37:473–483

    Article  Google Scholar 

  25. Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of Wood Biomass for Bio-oil: A Critical Review. Energy & Fuels 20:848–889

    Article  Google Scholar 

  26. Moghtaderi B (2006) The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire and Materials 30:1–34

    Article  Google Scholar 

  27. Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioproducts & Biorefining 2:393–414

    Article  MathSciNet  Google Scholar 

  28. Prakash W, Karunanithi T (2008) Kinetic Modeling in Biomass Pyrolysis – A Review. J Appl Sci Res 4:1627–1636

    Google Scholar 

  29. Prakash N, Karunanithi T (2009) Advances in Modelling and Simulation of Biomass Pyrolysis. Asian J Sci Res 2:1–27

    Article  Google Scholar 

  30. Saastamionen J, Richard JR (1996) Simultaneous drying and pyrolysis of solid fuel particles. Combustion and Flame 106:288–300

    Article  Google Scholar 

  31. Melaaen MC (1996) Numerical Analysis of Heat and Mass Transfer in Drying and Pyrolysis of Porous Media. Numerical Heat Transfer, Part A 29:331–355

    Article  Google Scholar 

  32. Alves SS, Figueiredo JL (1989) A model for pyrolysis of wet wood. Chemical Engineering Science 44:2861–2869

    Article  Google Scholar 

  33. Shen DK, Fang MX, Luo ZY, Cen KF (2007) Modeling pyrolysis of wet wood under external heat flux. Fire Safety J 42:210–217

    Article  Google Scholar 

  34. Dahmen W, Reusken A (2008) Numerik für Ingenieure und Naturwissenschaftler, 2. Aufl. Springer Verlag, Heidelberg

    Google Scholar 

  35. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406

    Article  Google Scholar 

  36. Xiu SN, Shahbazi A (2012) Bio-oil production and upgrading research: A review. Renewable & Sustainable Energy Reviews 16:4406–4414

    Article  Google Scholar 

  37. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38:68–94

    Article  Google Scholar 

  38. Butler E, Devlin G, Meier D, Mc Donnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews 15:4171–4186

    Article  Google Scholar 

  39. Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catalysis Today 171:1–13

    Article  Google Scholar 

  40. Deng CJ, Liu RH, Cai JM (2008) State of art of biomass fast pyrolysis for bio-oil in China: a review. J Energy Inst 81:211–217

    Article  Google Scholar 

  41. Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioprod Bioref 2:393–414

    Article  MathSciNet  Google Scholar 

  42. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 48:87—92

    Article  Google Scholar 

  43. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20:848–889

    Article  Google Scholar 

  44. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials – a review. Bioresource Technology 68:71–77

    Article  Google Scholar 

  45. Bai X, Brown RC, Fu J, Shanks BH, Kieffer M (2014) The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction. Energy & Fuels 28:1111–1120

    Article  Google Scholar 

  46. Oudenhoven SRG, Westerhof RJM, Aldenkamp N, Brilman DWF, Kersten SRA (2013) Demineralization of wood using wood-derived acid: Towards a selective pyrolysis process for fuel and chemicals production. J Anal Appl Pyrolysis 103:112–118

    Article  Google Scholar 

  47. Mourant D, Wang Z, He M, Wang XS, Garcia-Perez M, Ling K, Li C-Z (2011) Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90:2915–2922

    Article  Google Scholar 

  48. Ma Z, Troussard E, van Bokhoven JA (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal, A 423–424:130–136

    Article  Google Scholar 

  49. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P (2010) Lignin fast pyrolysis: Results from an international collaboration. J Anal Appl Pyrolysis 88:53–72

    Article  Google Scholar 

  50. Beis SH, Mukkamala S, Hill N, Joseph J, Baker C, Jensen B, Stemmler EA, Wheeler MC, Frederick BG, van HA, Berg AG, De SWJ (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424

    Google Scholar 

  51. Baumlin S, Broust F, Bazer-Bachi F, Bourdeaux T, Herbinet O, Ndiaye FT, Ferrer M, Lede J (2006) Production of hydrogen by lignins fast pyrolysis. Int J Hydrogen Energy 31:2179–2192

    Article  Google Scholar 

  52. Wan S, Wang Y (2014) A review on ex situ catalytic fast pyrolysis of biomass. Front Chem Sci Eng 8:280–294

    Article  Google Scholar 

  53. Ruddy DA, Schaidle JA, Ferrell JR III, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490

    Article  Google Scholar 

  54. Marker TL, Felix LG, Linck MB, Roberts MJ (2012) Integrated Hydropyrolysis and Hydroconversion (IH2) for the Direct Production of Gasoline and Diesel Fuels or Blending Components from Biomass, Part 1: Proof of Principle Testing. Environmental Progress & Sustainable Energy 31:191–199

    Article  Google Scholar 

  55. Lindfors C, Kuoppala E, Oasmaa A, Solantausta Y, Arpiainen V (2014) Fractionation of bio-oil. Energy & Fuels 28:5785–5791

    Article  Google Scholar 

  56. Brown RC, Jones ST, Pollard A (2013) Bio-oil fractionation and condensation. US Patent, US 8,476,480 B1

    Google Scholar 

  57. Westerhof RJM, Brilman DWF, Garcia-Perez M, Wang Z, Oudenhoven SRG, van Swaaij WPM, Kersten SRA (2011) Fractional condensation of biomass pyrolysis vapors. Energy & Fuels 25:1817–1829

    Article  Google Scholar 

  58. Elliott DC, Neuenschwander GG, Hart TR (2013) Hydroprocessing Bio-Oil and Products Separation for Coke Production. ACS Sustainable Chemistry & Engineering 1:389–392

    Article  Google Scholar 

  59. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Solantausta Y (2012) Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust. Energy & Fuels 26:3891–3896

    Article  Google Scholar 

  60. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy & Fuels 21:1792–1815

    Article  Google Scholar 

  61. PyNE (2014) http://www.pyne.co.uk/?_id=69. Zugegriffen: 23.12.2014

  62. Werther J, Hartge E-U, Heinrich S (2014) Fluidized-Bed Reactors – Status and Some Development Perspectives. Chem Ing Tech 86:2022–2038

    Article  Google Scholar 

  63. Okasha F, Zaater G, El-Emam S, Awad M, Zeidan E (2014) Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics. Fuel 133:143–152

    Article  Google Scholar 

  64. Meier D, van de Beld B, Bridgwater AV, Elliott DC, Oasmaa A, Preto F (2013) State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable & Sustainable Energy Reviews 20:619–641

    Article  Google Scholar 

  65. Wehlte S, Meier D, Moltran J, Faix O (1997) The impact of wood preservatives on the flash pyrolysis of biomass. In: Bridgwater AV, Boocock DGB (Hrsg) Developments in Thermochemical Biomass Conversion. Chapman & Hall, London, S 206–219

    Chapter  Google Scholar 

  66. Dynamotive (2005) An Update on the West Lorne Bio-oil Project. PyNe Newsletter. Aston University. Birmingham, UK, S 3–4

    Google Scholar 

  67. Solantausta Y, Oasmaa A, Sipila K, Lindfors C, Lehto J, Autio J, Jokela P, Alin J, Heiskanen J (2012) Bio-oil Production from Biomass: Steps toward Demonstration. Energy & Fuels 26:233–240

    Article  Google Scholar 

  68. Valmet (2015) http://www.valmet.com/valmet/products/biofuels-andbiomaterials/biooil. Zugegriffen: 32.10.2015

  69. Meier D, Faix O (1998) State of the art of applied fast pyrolysis of lignocellulosic materials – a review. Bioresour Technol 68:71–77

    Article  Google Scholar 

  70. Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioproducts & Biorefining-Biofpr 4:178–208

    Article  Google Scholar 

  71. Wagenaar BM (1994) The rotating cone reactor – for rapid thermal solids processing. Twente University of Technology

    Google Scholar 

  72. Wagenaar BM, Kuipers JAM, Prins W, v Swaaij WPM (1994) The rotating cone flash pyrolysis reactor. In: Bridgwater AV (Hrsg) Adv Thermochem Biomass Convers, [Ed Rev Pap Int Conf] 3rd, Meeting Date, 1992. Blackie, London, S 1122

    Google Scholar 

  73. EMPYRO (2014) http://www.empyroproject.eu. Zugegriffen: 23.10.2015

  74. Dahmen N, Dinjus E, Henrich E (2007) Synthesis gas from biomass – problems and solutions en route to technical realization. Oil & Gas European Magazine 33(1):31–34

    Google Scholar 

  75. Lédé J, Li HZ, Villermaux J (1987) Fusion-like behaviour of wood pyrolysis. J Anal Appl Pyrolysis 10:291–308

    Article  Google Scholar 

  76. Martin H, Lede J, Li Z, Villermaux J, Moyne C, Degiovanni A (1986) Ablative melting of a solid cylinder perpendiculary pressed against a heated wall. Int J Heat Mass Transfer 29:1407–1415

    Article  Google Scholar 

  77. Lédé J, Panagopoulos J, Li HZ, Villermaux J (1985) Fast Pyrolysis of Wood – Direct Measurement and Study of Ablation Rate. Fuel 64:1514–1520

    Article  Google Scholar 

  78. Boutin O, Kiener P, Li HZ, Lédé J (1997) Temperature of ablative pyrolysis of wood. Comparison of spinning disk and rotating cylinder experiments. In: Kaltschmitt M, Bridgwater AV (Hrsg) Biomass Gasification and Pyrolysis. State of the art and future perspectivs. CPL Press, Newbury, UK, S 336–344

    Google Scholar 

  79. Lede J, Broust F, Ndiaye F-T, Ferrer M (2007) Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel 86:1800–1810

    Article  Google Scholar 

  80. Bramer EA, Brem G (2003) A new technology for fast pyrolysis of biomass, development of the PyRos reactor. CPL Press, Newbury, UK, S 63–73

    Google Scholar 

  81. Lédé J (2000) The Cyclone: A Multifunctional Reactor for the Fast Pyrolysis of Biomass. Ind Eng Chem Res 39:893–903

    Article  Google Scholar 

  82. Bech N, Larsen MB, Jensen PA, Dam-Johansen K (2009) Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor. Biomass Bioenergy 33:999–1011

    Article  Google Scholar 

  83. Trinh TN, Jensen PA, Dam-Johansen K, Knudsen NO, Soerensen HR, Hvilsted S (2013) Comparison of Lignin, Macroalgae, Wood, and Straw Fast Pyrolysis. Energy & Fuels 27:1399–1409

    Article  Google Scholar 

  84. Ashcraft RW, Heynderickx GJ, Marin GB (2012) Modeling fast biomass pyrolysis in a gas-solid vortex reactor. Chem Eng J (Amsterdam, Neth) 207–208:195–208

    Google Scholar 

  85. Schöll S, Klaubert H, Meier D (2006) Bio-oil from a new ablative pyrolyser. In: Bridgwater AV, Boocock DGB (Hrsg) Science in Thermal and Chemical Biomass Conversion. CPL Press, Newbury, UK, S 1372–1378

    Google Scholar 

  86. Meier D, Schöll S, Klaubert H, Markgraf J (2006) Betriebsergebnisse der ersten BTO-Anlage zur ablativen Flash-Pyrolyse von Holz mit Energiegewinnung in einem BHKW DGMK-Fachbereichstagung „Energetische Nutzung von Biomassen“, 24.–26. August 2006. Velen, DGMK, Hamburg, S 115–120

    Google Scholar 

  87. Schöll S, Klaubert H, Meier D (2004) Holzverflüssigung durch Flash-Pyrolyse mit einem neuartigen ablativen Pyrolysator. In: Energetische Nutzung von Biomassen. Velen, DGMK, Hamburg, S 47–54

    Google Scholar 

  88. PyNE (2014) http://www.pyne.co.uk/?_id=69. Zugegriffen: 23.10.2015

  89. Apfelbacher A, Conrad S, Schulzke T (2014) Ablative Fast Pyrolysis-Potential For Cost Effective Conversion of Agricultural Residues. Environmental Progress & Sustainable Energy 33:660–675

    Article  Google Scholar 

  90. Meier D, Schöll S, Klaubert H, Markgraf J (2007) Practical results from PYTEC’s biomass-to-oil (BTO) pocess with ablaive pyrolyser and diesel CHP plant. In: Bridgwater AV (Hrsg) Bio€ – success and visions for bioenergy. CPL Scientific Publishing Service Ltd, Newbury, UK, S 1–5

    Google Scholar 

  91. Schulzke T, Apfelbacher A, Conrad S (2014) Development of a mobile flash pyrolysis unit for herbaceous crop residues (straw). DGMK-Fachbereichstagung „Konversion von Biomassen“, Rotenburg a. d. Fulda, DGMK, Hamburg, S 41–48

    Google Scholar 

  92. Yang J, Blanchette D, de Caumia B, Roy C (2001) Modelling, scale-up and demonstration of a vacuum pyrolysis reactor. Blackwell Science Ltd., Oxford, S 1296–1311

    Book  Google Scholar 

  93. Roy C, Morin D, Dube F (1997) The biomass Pyrocycling process. CPL Press, Newbury, UK, S 307–315

    Google Scholar 

  94. Gagnon M, Roy C, Riedl B (2004) Adhesives made from isocyanates and pyrolysis oils for wood composites. Holzforschung 58:400–407

    Article  Google Scholar 

  95. Chan FD, Rield B, Wang X-M, Roy C, Lu X, Amen-Chen C (2001) Wood adhesives from pyrolysis oil for OSB. Forest Products Society, S 125–132

    Google Scholar 

  96. Roy C, Calve L, Lu X, Pakdel H, Amen-Chen C (1999) Wood composite adhesives from softwood bark-derived vacuum pyrolysis oils. Elsevier Science, Oxford UK, S 521–526

    Google Scholar 

  97. Meier D, Windt M (2014) Analysis of bio-oils. In: Hornung A (Hrsg) Transformation of Biomass – Theory to Practice. John Wiley & Sons Ltd., Chichester, UK, S 227–256

    Google Scholar 

  98. Lehto J, Oasmaa A, Solanausta Y, Kytö M, Chiaramonti D (2013) Fuel oil quality and combustion of fast pyrolysis bio-oils. VTT Technical Research Centre of Finland, Espoo, S 79

    Google Scholar 

  99. Oasmaa A, Korhonen J, Kuoppala E (2011) An approach for stability measurement of wood-based fast pyrolysis bio-oils. Energy & Fuels 25:3307–3313

    Article  Google Scholar 

  100. Oasmaa A, Kuoppala E, Selin J-F, Gust S, Solantausta Y (2004) Fast Pyrolysis of Forestry Residue and Pine. 4. Improvement of the Product Quality by Solvent Addition. Energy & Fuels 18:1578–1583

    Article  Google Scholar 

  101. Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels 11:1081–1091

    Article  Google Scholar 

  102. Oasmaa A, Kuoppala E (2003) Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy & Fuels 17:1075–1084

    Article  Google Scholar 

  103. Blin J, Volle G, Girard P, Bridgwater T, Meier D (2007) Biodegradability of biomass pyrolysis oils: Comparison to conventional petroleum fuels and alternatives fuels in current use. Fuel 86:2679–2686

    Article  Google Scholar 

  104. Diebold JP (2000) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. Report: NREL/SR-570-27613, National Renewable Energy Laboratory, Golden, CO, USA, S 51

    Google Scholar 

  105. Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D (2014) Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl Energy 116:178–190

    Article  Google Scholar 

  106. Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D (2013) Fuel oil quality and combustion of fast pyrolysis bio-oils. VTT Technol 87:1–81

    Google Scholar 

  107. PyNe (2006) http://www.pyne.co.uk/?_id=4. Zugegriffen: 23.10.2015

  108. Oasmaa A, Peacocke C, Gust S, Meier D, McLellan R (2005) Norms and standards for pyrolysis liquids. End-user requirements and specifications. Energy & Fuels 19:2155–2163

    Article  Google Scholar 

  109. CEN (2014) http://www.biofuelstp.eu/biofuels-standards.html. Zugegriffen: 23.10.2015

  110. Heidenreich S (2013) Hot gas filtration – A review. Fuel 104:83–94

    Article  Google Scholar 

  111. Baldwin RM, Feik CJ (2013) Bio-oil stabilization and upgrading by hot gas filtration. Energy & Fuels 27:3224–3238

    Article  Google Scholar 

  112. Scahill J, Diebold JP, Feik C (1997) Removal of residual char fines from pyrolysis vapors by hot gas filtration. Blackie, London, S 253–266

    Book  Google Scholar 

  113. Oasmaa A, Sipilä K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquid: Effect of light volatiles on the stability of pyrolysis liquids. Energy & Fuels 19:2556–2561

    Article  Google Scholar 

  114. Pollard AS, Rover MR, Brown RC (2012) Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. J Anal Appl Pyrolysis 93:129–138

    Article  Google Scholar 

  115. Ikura M, Mirmiran S, Stanciulescu M, Sawatzky H (1998) Pyrolysis liquid-in-diesel oil microemulsions, Patent, US 5820640A, 1998

    Google Scholar 

  116. Hernandez JF, Morla JC (2003) Fuel emulsions using biomass pyrolysis products as an emulsifier agent. Energy & Fuels 17:302–307

    Article  Google Scholar 

  117. Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines – Part 1: emulsion production. Biomass & Bioenergy 25:85–99

    Article  Google Scholar 

  118. Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines – Part 2: tests in diesel engines. Biomass & Bioenergy 25:101–111

    Article  Google Scholar 

  119. Guo Z, Yin Q, Wang S (2012) Bio-oil emulsion fuels production using power ultrasound. Adv Mater Res 347–353:2709–2712

    Google Scholar 

  120. Li Y, Wang T, Liang W, Wu C, Ma L, Zhang Q, Zhang X, Jiang T (2010) Ultrasonic Preparation of Emulsions Derived from Aqueous Bio-oil Fraction and Diesel and Combustion Characteristics in Diesel Generator. Energy & Fuels 24:1987–1995

    Article  Google Scholar 

  121. Alcala A, Bridgwater AV (2013) Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil. Fuel 109:417–426

    Article  Google Scholar 

  122. Hilten RN, Bibens BP, Kastner JR, Das KC (2009) In-Line Esterification of Pyrolysis Vapor with Ethanol Improves Bio-oil Quality. Energy & Fuels 24:673–682

    Article  Google Scholar 

  123. Tanneru SK, Parapati DR, Steele PH (2014) Pretreatment of bio-oil followed by upgrading via esterification to boiler fuel. Energy (Oxford, U K) 73:214–220

    Article  Google Scholar 

  124. Xu J, Jiang J, Dai W, Zhang T, Xu Y (2011) Bio-Oil Upgrading by Means of Ozone Oxidation and Esterification to Remove Water and to Improve Fuel Characteristics. Energy & Fuels 25:1798–1801

    Article  Google Scholar 

  125. Wang JJ, Chang J, Fan JA (2010) Upgrading of Bio-oil by Catalytic Esterification and Determination of Acid Number for Evaluating Esterification Degree. Energy & Fuels 24:3251–3255

    Article  Google Scholar 

  126. Xu XM, Zhang CS, Zhai YP, Liu YG, Zhang RQ, Tang XY (2014) Upgrading of Bio-Oil Using Supercritical 1-Butanol over a Ru/C Heterogeneous Catalyst: Role of the Solvent. Energy & Fuels 28:4611–4621

    Article  Google Scholar 

  127. Ying X, Wang T, Ma L, Chen G (2012) Upgrading of fast pyrolysis liquid fuel from biomass over Ru/γ-Al2O3 catalyst. Energy Convers Manage 55:172–177

    Article  Google Scholar 

  128. Xu Y, Hu X, Li C, Zhou S, Zhu X (2011) Study on upgrading bio-oil by ethanol catalytic esterification with solid super base. Taiyangneng Xuebao 32:1361–1364

    Google Scholar 

  129. Xu Y, Wang TJ, Ma LL, Zhang Q, Liang W (2010) Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/gamma-Al2O3 catalysts. Applied Energy 87:2886–2891

    Article  Google Scholar 

  130. Xu JM, Jiang JC, Sun YJ, Lu YJ (2008) Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass & Bioenergy 32:1056–1061

    Article  Google Scholar 

  131. Mercader FM, Groeneveld MJ, Kersten SRA, Venderbosch RH, Hogendoorn JA (2010) Pyrolysis oil upgrading by high pressure thermal treatment. Fuel 89:2829–2837

    Article  Google Scholar 

  132. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie-International Edition 46:7184–7201

    Article  Google Scholar 

  133. Bridgwater AV (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295

    Article  Google Scholar 

  134. Bridgwater AV (1994) Catalysis in Thermal Biomass Conversion. Applied Catalysis a-General 116:5–47

    Article  Google Scholar 

  135. Al-Sabawi M, Chen JW (2012) Hydroprocessing of Biomass-Derived Oils and Their Blends with Petroleum Feedstocks: A Review. Energy & Fuels 26:5373–5399

    Article  Google Scholar 

  136. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    Article  Google Scholar 

  137. Frankiewicz TC (1982) Converting oxygenated hydrocarbons into hydrocarbons, Patent, US 4320241A

    Google Scholar 

  138. Frankiewicz, TC (1980) The conversion of biomass-derived pyrolytic vapors to hydrocarbons. Occidental Res Corp, S 123–136

    Google Scholar 

  139. Diebold J, Scahill J (1988) Biomass to gasoline. Upgrading pyrolysis vapors to aromatic gasoline with zeolite catalysis at atmospheric pressure. ACS Symp Ser 376:264–276

    Article  Google Scholar 

  140. Iisa K, Stanton AR, Nimlos M (2014) Catalyst deactivation in ex situ and in situ catalytic fast pyrolysis of biomass. American Chemical Society, San Francisco, CA, USA

    Google Scholar 

  141. Wang L, Lei H, Bu Q, Ren S, Wei Y, Zhu L, Zhang X, Liu Y, Yadavalli G, Lee J, Chen S, Tang J (2014) Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 129:78–85

    Article  Google Scholar 

  142. Samolada MC, Baldauf W, Vasalos IA (1998) Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 77:1667–1675

    Article  Google Scholar 

  143. Bertero M, Sedran U (2013) Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts. Bioresource Technology 135:644–651

    Article  Google Scholar 

  144. Envergent (2014) http://www.envergenttech.com. Zugegriffen: 23.10.2015

  145. KIOR (2014) http://www.kior.com. Zugegriffen: 23.10.2015

  146. RTI (2014) http://www.rti.org/page.cfm?obj=27B2CDE6-5056-B100-3149261B9B1FBEF3. Zugegriffen: 23.10.2015

  147. Anellotech (2014) http://www.anellotech.com. Zugegriffen: 23.10.2015

  148. Foster AJ, Jae J, Cheng Y-T, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal, A 423–424:154–161

    Article  Google Scholar 

  149. Cheng Y-T, Wang Z, Gilbert CJ, Fan W, Huber GW (2012) Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angew Chem, Int Ed 51:11057–11100

    Article  Google Scholar 

  150. Zhang H, Cheng Y-T, Vispute TP, Xiao R, Huber GW (2011) Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ Sci 4:2297–2307

    Article  Google Scholar 

  151. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268

    Article  Google Scholar 

  152. Huber GW, Jae J, Vispute T, Carlson T, Tompsett G, Cheng Y-T (2009) Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds, US Patent, WO2009111026A2

    Google Scholar 

  153. Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top Catal 52:241–252

    Article  Google Scholar 

  154. Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1:397–400

    Article  Google Scholar 

  155. Radlein D, Quignard A (2013) A short historical review of fast pyrolysis of biomass. Oil and Gas Science and Technology – Rev. IFP Energies nouvelles 68:765–783

    Article  Google Scholar 

  156. PyNE (2014) http://ww.pyne.co.uk/?_id=131. Zugegriffen: 30.12.2014

  157. Zacher AH, Olarte MV, Santosa DM, Elliott DC (2014) A review and perspective of recent bio-oil hydrotreating research. Green Chemistry 16:491–515

    Article  Google Scholar 

  158. Traynor T, Brandvold TA (2012) Methods for producing low oxyygen biomass-derived pyrolysis oils. US Patent US 2012/0017493 A1, 12/843,649

    Google Scholar 

  159. Traynor T, Brandvold TA (2012) Methods for producing low oxygen biomass-derived pyrolysis oils. Patent WO2012018524A2

    Google Scholar 

  160. Radlein D, Wang J, Yuan Y, Quignard A (2012) Dynamotive Energy Systems. Methods of upgrading biooil to transportation grade hydrocarbon fuels. Patent WO2012035410A2

    Google Scholar 

  161. No S-Y (2014) Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation-A review. Renewable Sustainable Energy Rev 40:1108–1125

    Article  Google Scholar 

  162. Khodier A, Kilgallon P, Legrave N, Simms N, Oakey J, Bridgwater T (2009) Pilot-scale combustion of fast-pyrolysis bio-oil: Ash deposition and gaseous emissions. Environ Prog Sustainable Energy 28:397–403

    Article  Google Scholar 

  163. Wornat MJ, Porter BG, Yang NYC (1994) Single droplet combustion of biomass pyrolysis oils. Energy & Fuels 8:1131–1142

    Article  Google Scholar 

  164. Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass & Bioenergy 7:187–192

    Article  Google Scholar 

  165. van de Beld L, Florijn J, Holle E (2013) The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Applied Energy 102:190–107

    Article  Google Scholar 

  166. Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renewable & Sustainable Energy Reviews 11:1056–1086

    Article  Google Scholar 

  167. Jay DC, Rantanen OA, Sipilä KH, Nylund NO (1995) Wood pyrolysis oil for diesel engines ASME1995 fall technical conference, Milwaukee, WI

    Google Scholar 

  168. Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R (2012) State of the Art of the Bioliq (R) Process for Synthetic Biofuels Production. Environmental Progress & Sustainable Energy 31:176–181

    Article  Google Scholar 

  169. Dahmen N, Dinjus E, Henrich E (2012) Synthetic Fuels from the Biomass, in Renewable Energy. Wiley-VCH Verlag GmbH & Co. KGaA, S 83–87

    Google Scholar 

  170. Theobald A, Arcella D, Carere A, Croera C, Engel KH, Gott D, Gurtler R, Meier D, Pratt I, Rietjens IMCM, Simon R, Walker R (2012) Safety assessment of smoke flavouring primary products by the European Food Safety Authority. Trends in Food Science & Technology 27:97–108

    Article  Google Scholar 

  171. Meier D (2011) Flüssiger Rauch – Eine Herausforderung für die Analyse. J Culinaire 13:68–73

    Google Scholar 

  172. Srinivasan V, Adhikari S, Chattanathan SA, Tu M, Park S (2014) Catalytic Pyrolysis of Raw and Thermally Treated Cellulose Using Different Acidic Zeolites. BioEnergy Res 7:867–875

    Article  Google Scholar 

  173. Li Q, Steele PH, Yu F, Mitchell B, Hassan E-BM (2013) Pyrolytic spray increases levoglucosan production during fast pyrolysis. J Anal Appl Pyrolysis 100:33–40

    Article  Google Scholar 

  174. Longley CJ, Howard J, Fung DPC, Levoglucosan recovery from cellulose and wood pyrolysis liquids. Adv Thermochem Biomass Convers, [Ed. Rev Pap Int Conf], 3rd, Meeting Date 1992, ed. Bridgwater A. V. Vol. 2. 1994: Blackie. 1441–1451

    Google Scholar 

  175. Longley CJ, Howard J, Fung DPC (1994) Levoglucosan recovery from cellulose and wood pyrolysis liquids. In: Bridgwater AV (Hrsg) Adv. Thermochem. Biomass Convers., [Ed. Rev Pap Int Conf], 3rd, Meeting Date 1992. Blackie, London, 1441–1451

    Google Scholar 

  176. Witczak ZJ (1994) Levoglucosenone and Levoglucosans – Chemistry and Applications. ATL Press, Mount Prospect, S 219

    Google Scholar 

  177. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 18:590–598

    Article  Google Scholar 

  178. Sukhbaatar B, Steele PH, Kim MG (2009) Use of Lignin Separated from Bio-Oil in Oriented Strand Board Binder Phenol-Formaldehyde Resins. Bioresources 4:789–804

    Google Scholar 

  179. Chan F, Riedl B, Wang XM, Lu X, Amen-Chen C, Roy C (2002) Performance of pyrolysis oil-based wood adhesives in OSB. Forest Products J 52:31–38

    Google Scholar 

  180. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology 79:277–299

    Article  Google Scholar 

  181. Amen-Chen C, Riedl B, Wang XM, Roy C (2002) Softwood bark pyrolysis oil-PF resols – Part 3. Use of propylene carbonate as resin cure accelerator. Holzforschung 56:281–288

    Google Scholar 

  182. Amen-Chen C, Riedl B, Wang XM, Roy C (2002) Softwood bark pyrolysis oil-PF resols – Part 1. Resin synthesis and OSB mechanical properties. Holzforschung 56:167–175

    Google Scholar 

  183. Panagiotis N (1998) Binders for the wood industry made with pyrolysis oil. Newsletter of the PyNe-Network 6. Aston University, Birmingham

    Google Scholar 

  184. Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research 42:1619–1640

    Article  Google Scholar 

  185. Antal MJ, Allen SG, Dai X, Shimizu B, Tam MS, Gronli M (2000) Attainment of the theoretical yield of carbon from biomass. Ind Eng Chem Res 39:4024–4031

    Article  Google Scholar 

  186. Antal MJ, Mochidzuki K, Paredes LS (2003) Flash carbonization of biomass. Industrial & Engineering Chemistry Research 42:3690–3699

    Article  Google Scholar 

  187. Antal MJ, Croiset E, Dai X, DeAlmeida C, Mok WSL, Norberg N, Richard JR, Al Majthoub M (1996) High-Yield Biomass Charcoal. Energy & Fuels 10:652–658

    Article  Google Scholar 

  188. Emrich W (1978) Handbook of Charcoal Making – The traditional and industrial methods Solar Energy R&D in the European Community Series E, Bd 7. D. Reidel Publishing Company, Dordrecht/Boston/Lancaster, S 278

    Google Scholar 

  189. Earl DE (1974) A Report on Charcoal. An Andre Mayer Fellowship Report. Report: FAO, (Rome), 1974, S 104

    Google Scholar 

  190. Gläser H, Flügge F (1954) Chemische Technologie des Holzes. Carl Hanser, München, S 156

    Google Scholar 

  191. Humphrey FR, Ironside GE (1974) Charcoal from the New South West Timber Species. Technical Paper Report, 1974

    Google Scholar 

  192. Antal MJ, Mochidzuki K, Paredes LS (2003) Flash carbonisation of biomass. Ind Eng Chem Res 3690–3699

    Google Scholar 

  193. Deutsches Institut für Normung (2005) (Hrsg) Geräte, feste Brennstoffe und Anzündhilfen zum Grillen – Teil 2: Grill-Holzkohle und Grill-Holzkohlebriketts – Anforderungen und Prüfverfahren. Berlin

    Google Scholar 

  194. Deutsches Institut für Normung (1978) (Hrsg) Prüfung fester Brennstoffe Grill-Holzkohle und Grill-Holzkohlebriketts – Anforderungen, Prüfungen. Berlin

    Google Scholar 

  195. DIN CERTCO Gesellschaft für Konformitätsbewertung (2008) Zertifizierungsprogramm „Holzkohle Holzkohlebriketts DINPlus“. Berlin

    Google Scholar 

  196. Grammel R (1989) Forstbenutzung – Technologie, Verwertung und Verwendung des Holzes Pareys Studientexte, Bd 67. Verlag Paul Parey, Hamburg und Berlin, S 193

    Google Scholar 

  197. FAO (2013) http://faostat3.fao.org/download/F/FO/E. Zugegriffen: 22.10.2015

  198. von Kienle H, Bäder E (1980) Aktivkohle und ihre industrielle Anwendung. Wiley-VCH, Weinheim, S 214

    Google Scholar 

  199. Shafizadeh F (1985) Pyrolytic reactions and products of biomass. In: Overend RP, Milne LK, Mudge TA (Hrsg) Fundam Thermochem Biomass Conversion. Elsevier Appl Sci, Amsterdam, S 183–217

    Chapter  Google Scholar 

  200. Koppejan J, Sokhansanj S, Melin S, Madrali S (2012) Status overview of torrefaction technologies Report: IEA Bioenergy Task, Bd 32. Enschede, S 61

    Google Scholar 

  201. Nhuchhen DR, Basu P, Acharya B (2014) A comprehensive review on biomass torrefaction. Int J Renewable Energy & Biofuels Article ID 506376. doi:10.5171/2014.506376

    Google Scholar 

  202. Bergman PCA (2005) Combined torrefaction and pelletisation: The TOP process. Report: ECN-C-05-073, ECN Biomass, Petten, NL, S. 29

    Google Scholar 

  203. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 35:3748–3762

    Google Scholar 

  204. Ciolkosz D, Wallace R (2011) A review of torrefaction for bioenergy feedstock production. Biofuels Bioproducts & Biorefining-Biofpr 5:317–329

    Article  Google Scholar 

  205. Bergman PCA, Boersma AR, Zwart RWH, Kiel JHA (2005) Development of torrefaction for biomass co-firing in existing coal-fired power stations ″BIOCOAL″. Report: ECN-C-05-013, ECN, Pettem, NL, S. 71

    Google Scholar 

  206. Wilén C, Jukola P, Järvinen T, Sipilä K, Verhoeff F, Kiel J (2013) Wood torrefaction – pilot tests and utilisation prospects. Report: 122, VTT Technical Research Centre of Finland, S. 80

    Google Scholar 

  207. Dhungana A, Basu P, Dutta PA (2012) Effects of reactor design on the torrefaction of biomass. J Energy Resour Technol 134. doi:10.1115/1.4007484

    Google Scholar 

  208. Nordwaeger M, Hakansson K, Li C, Nordin A, Olofsson I, Pommer L, Wiklund-Lindström S (2010) Parametric study of pilot-scale biomass torrefaction. 18th European Biomass Conference and Exhibition, Lyon, France, ETA-Florence, S 1558–1559

    Google Scholar 

  209. Bergman PCA, Kiel JHA (2005) Torrefaction for biomass upgrading. Report: ECN-RX-05-180, ECN. Petten, Niederlande, S 8

    Google Scholar 

  210. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology 102:1246–1253

    Article  Google Scholar 

  211. Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable & Sustainable Energy Reviews 15:4212–4222

    Article  Google Scholar 

  212. Bridgeman TG, Jones JM, Williams A, Waldron DJ (2010) An investigation of the grindability of two torrefied energy crops. Fuel 89:3911–3918

    Article  Google Scholar 

  213. Agar D, Wihersaari M (2012) Bio-coal, torrefied lignocellulosic resources – Key propertiesfor its use in co-firing with fossil coal – Their status. Biomass & Bioenergy 44:107–111

    Article  Google Scholar 

  214. Repellin V, Govin A, Rolland M, M. R (2010) Energy requirement for fine grinding of torrefied wood. Biomass & Bioenergy 34:923–930

    Article  Google Scholar 

  215. Svoboda K, Pohorely M, Hartman M, Martinec J (2009) Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology 90:629–635

    Article  Google Scholar 

  216. Stelte W, Sanadi AR, Shang L, Holm JK, Ahrenfeldt J, Henriksen UB (2012) Recent developments in biomass pelletization – a review. BioResources 7:4451–4490

    Google Scholar 

  217. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470

    Article  Google Scholar 

  218. Bergman P, Boersma A, Kiel J, Prins M, Ptasinski K, Janssen F (2004) Torrefaction for entrained-flow gasification of biomass The 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy

    Google Scholar 

  219. Burnham AK, Braun RL, Gregg HR (1987) Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy & Fuels 1:452–458

    Article  Google Scholar 

  220. Sundararaman P, Merz PH, Mann RG (1992) Determination of Kerogen Activation Energy Distribution. Energy & Fuels 6:793–803

    Article  Google Scholar 

  221. Narayan R, Antal MJ Jr (1996) Thermal Lag, Fusion, and the Compensation Effect during Biomass Pyrolysis. Industrial & Engineering Chemistry Research 35:1711–1727

    Article  Google Scholar 

  222. Kersten SRA, Wang Y, Prins W, van Swaaij WPM (2005) Biomass Pyrolysis in a Fluidized Bed Reactor. Part 1: Literature Review and Model Simulations. Industrial & Engineering Chemistry Research 44:8773–8785

    Article  Google Scholar 

  223. Thunman H, Leckner B (2002) Thermal conductivity of wood – models for different stages of combustion. Biomass and Bioenergy 23:47–54

    Article  Google Scholar 

  224. Lu KT, Luo KM, Lin SH, Su SH, Hu KH (2004) The acid-catalyzed phenol-formaldehyde reaction – Critical runaway conditions and stability criterion. Process Safety and Environmental Protection 82:37–47

    Article  Google Scholar 

  225. Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guebitz GM, Buchert J (2003) Polymerization of guaiacol and a phenolic beta-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS. Biotechnology Progress 19:1505–1509

    Article  Google Scholar 

  226. Patwardhan PR, Brown RC, Shanks BH (2011) Understanding the fast pyrolysis of lignin. Chemsuschem 4:1629–1636

    Article  Google Scholar 

  227. Ensyn (2011) http://www.ensyn.com/wp-content/uploads/2011/04/EC-Corp-PPT-April-2011.pdf. Zugegriffen: 22.12.2014

  228. Kolb T, Eberhard M, Dahmen N, Leibold H, Neuberger M, Sauer J, Seifert H, Zimmerlin B (2013) BtL – The bioliq process at KIT. DGMK Tagungsbericht 2013-2

    Google Scholar 

  229. Dahmen N, Dinjus E, Henrich E (2012) The Karlsruhe bioliq process. Synthetic fuels from biomass. Wiley-VCH Verlag GmbH & Co. KGaA, S 83–87

    Google Scholar 

  230. KIT (2014) http://www.bioliq.de/64.php. Zugegriffen: 23.12.2014

  231. Solantausta Y, Oasmaa A, Sipilä K, Lindfors C, Lehto J, Autio J, Jokela P, Heiskanen AJJ (2012) Bio-oil production from biomass: steps toward demonstration. Energy & Fuels 26:233–240

    Article  Google Scholar 

  232. Cheng Y-T, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angewandte Chemie 124:1416–1419

    Article  Google Scholar 

  233. PyNE (2014) http://ww.pyne.co.uk/?_id=127. Zugegriffen: 30.12.2014

  234. Andrews RG, Zukowski S, Patnaik PC (1997) Feasibility of firing an industrial gas turbine using a biomass derived fuel. In: Bridgwater AV, Boocock DGB (Hrsg) Developments in Thermochemical Biomass Conversion, Bd 1. Blackie Academic, London, S 495

    Chapter  Google Scholar 

  235. Hornung A (2013) Intermediate pyrolysis of biomass. Woodhead Publ Ser Energy 40:172–186

    Google Scholar 

  236. Yang Y, Brammer JG, Mahmood ASN, Hornung A (2014) Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169:794–799

    Article  Google Scholar 

  237. Ouadi M, Brammer JG, Yang Y, Hornung A, Kay M (2013) The intermediate pyrolysis of de-inking sludge to produce a sustainable liquid fuel. J Anal Appl Pyrolysis 102:24–32

    Article  Google Scholar 

  238. Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept-Biothermal valorisation of biomass (BtVB) process. J Sci Ind Res 70:664–667

    Google Scholar 

  239. Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM, Li Y (2013) Characterization of waste derived intermediate pyrolysis oils for use as diesel fuels. Fuel 103:247–257

    Article  Google Scholar 

  240. Mahmood ASN, Brammer JG, Hornung A, Steele A, Poulston S (2013) The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain. J Anal Appl Pyrolysis 103:328–342

    Article  Google Scholar 

  241. Neumann J, Binder S, Apfelbacher A, Gasson JR, Garcia PR, Hornung A (2014) Production and characterization of a new quality pyrolysis oil, char and syngas from digestate – Introducing the thermo-catalytic reforming process. J Anal Appl Pyrolysis 113:137–142

    Article  Google Scholar 

  242. BDI-OMV (2012) BDI und OMV machen Diesel aus Holz. http://www.bdi-bioenergy.com/de-bdi_und_omv_machen_diesel_aus_holz_-66-info-805.html. Zugegriffen: 11.01.2015

  243. Schwaiger N, Feiner R, Zahel K, Pieber A, Witek V, Pucher P, Ahn E, Wilhelm P, Chernev B, Schrottner H, Siebenhofer M (2011) Liquid and Solid Products from Liquid-Phase Pyrolysis of Softwood. Bioenergy Research 4:294–302

    Article  Google Scholar 

  244. Ritzberger J, Pucher P, Schwaiger N, Siebenhofer M (2014) The BioCRACK Process – A refinery ntegrated biomass-to-liquid concept to produce diesel from biogenic feedstock. Chemical Engineering Transactions 39. http://www.aidic.it/pres2014/199.pdf. Zugegriffen: 22.10.2015

  245. Wild M (2014) http://www.ieabcc.nl/workshops/task32_2014_graz_torrefaction/Wild_PPP.pdf. Zugegriffen: 14.01.2015

  246. Broido A, Nelson MA (1975) Char Yield on Pyrolysis of Cellulose. Combustion and Flame 24:263–268

    Article  Google Scholar 

  247. Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23:3525–3539

    Article  Google Scholar 

  248. Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280

    Article  Google Scholar 

  249. Cooley S, Antal MJ (1988) Kinetics of Cellulose Pyrolysis in the Presence of Nitric-Oxide. J Anal Appl Pyrolysis 14:149–161

    Article  Google Scholar 

  250. Milosavljevic I, Oja V, Suuberg EM (1996) Thermal Effects in Cellulose Pyrolysis: Relationship to Char Formation Processes. Ind Eng Chem Res 35:653–662

    Article  Google Scholar 

  251. Milosavljevic I, Suuberg EM (1995) Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics. Ind Eng Chem Res 34:1081–1091

    Article  Google Scholar 

  252. Shafizadeh F, Chin PPS (1977) Thermal deterioration of wood. ACS Symp Ser 43:57–81

    Article  Google Scholar 

  253. Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A (1991) Modeling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can J Chem Eng 69:907–915

    Article  Google Scholar 

  254. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science 34:47–90

    Article  Google Scholar 

  255. Di Blasi C (1993) Modeling and simulation of combustion processes of charring and non-charring solid fuels. Progress in Energy and Combustion Science 19:71–104

    Article  Google Scholar 

  256. Di Blasi C, Branca C, Santoro A, Bermudez RAP (2001) Weight loss dynamics of wood chips under fast radiative heating. J Anal Appl Pyrolysis 57:77–90

    Article  Google Scholar 

  257. Babu BV, Chaurasia AS (2003) Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass. Energy Conversion and Management 44:2135–2158

    Article  Google Scholar 

  258. Shafizad F, Mcginnis GD, Philpot CW (1972) Thermal-Degradation of Xylan and Related Model Compounds. Carbohydrate Research 25:23–33

    Article  Google Scholar 

  259. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-Depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy & Fuels 20:388–393

    Article  Google Scholar 

  260. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  261. Patwardhan PR, Brown RC, Shanks BH (2011) Product distribution from the fast pyrolysis of hemicellulose. Chemsuschem 4:636–643

    Article  Google Scholar 

  262. Ponder GR, Richards GN (1991) Thermal synthesis and pyrolysis of a xylan. Carbohydr Res 218:143–155

    Article  Google Scholar 

  263. Avni E, Suib SL, Coughlin RW (1985) Free radical formation in lignin during pyrolysis. Holzforschung 39:33–40

    Article  Google Scholar 

  264. Avni E, Coughlin RW, Solomon PR, King HH (1985) Mathematical modelling of lignin pyrolysis. Fuel 64:1495–1500

    Article  Google Scholar 

  265. Avni E, Coughlin RW (1985) Kinetic analysis of lignin pyrolysis using non-isothermal TGA. Thermochimica Acta 90:157–167

    Article  Google Scholar 

  266. Dominguez JC, Oliet M, Alonso MV, Gilarranz MA, Rodriguez F (2008) Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Industrial Crops and Products 27:150–156

    Article  Google Scholar 

  267. Ferdous D, Dalai AK, Bej SK, Thring RW (2002) Pyrolysis of lignins: Experimental and kinetics studies. Energy & Fuels 16:1405–1412

    Article  Google Scholar 

  268. Jiang GZ, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta 498:61–66

    Article  Google Scholar 

  269. Murugan P, Mahinpey N, Johnson KE, Wilson M (2008) Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods. Energy & Fuels 22:2720–2724

    Article  Google Scholar 

  270. Rao TR, Sharma A (1998) Pyrolysis rates of biomass materials. Energy 23:973–978

    Article  Google Scholar 

  271. Faix O, Jakab E, Till F, Szekely T (1988) Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry. Wood Sci Technol 22:323–334

    Article  Google Scholar 

  272. Fenner RA, Lephardt JO (1981) Examination of the Thermal-Decomposition of Kraft Pine Lignin by Fourier-Transform Infrared Evolved Gas-Analysis. J Agricultural and Food Chemistry 29:846–849

    Article  Google Scholar 

  273. Liu Q, Wang SR, Zheng Y, Luo ZY, Cen KF (2008) Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrolysis 82:170–177

    Article  Google Scholar 

  274. Pasquali CEL, Herrera H (1997) Pyrolysis of Lignin and Ir Analysis of Residues. Thermochim Acta 293:39–46

    Article  Google Scholar 

  275. Faix O, Meier D, Grobe I (1987) PyGC-MS/FID studies on isolated lignins and lignins in woody materials. J Anal Appl Pyrolysis 11:403–416

    Article  Google Scholar 

  276. Obst JR (1983) Analytical pyrolysis of hardwood and softwood lignins and its use in lignin-type determination of hardwood vessel elements. J Wood Chem Technol 3:377–397

    Article  Google Scholar 

  277. Saiz-Jimenez C, De Leeuw JW (1986) Lignin pyrolysis products: Their structures and their significance as biomarkers. Org Geochem 10:869–876

    Article  Google Scholar 

  278. Evans RJ, Milne TA, Soltys MN (1986) Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. III. Primary pyrolysis of lignin. J Anal Appl Pyrolysis 9:207–236

    Article  Google Scholar 

  279. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews 110:3552–3599

    Article  Google Scholar 

  280. Scholze B, Hanser C, Meier D (2001) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part II. GPC, carbonyl groups, and 13 C-NMR. J Anal Appl Pyrolysis 58–59:387–400

    Article  Google Scholar 

  281. Fratini E, Bonini M, Oasmaa A, Solantausta Y, Teixeira J, Baglioni P (2006) SANS analysis of the microstructural evolution during the aging of pyrolysis oils from biomass. Langmuir 22:306–312

    Article  Google Scholar 

  282. Piskorz J, Majerski P, Radlein D (1999) properties, applications, and significance for process engineers. In: Overend RP, Chornet E (Hrsg) Biomass – A growth opportunity in green energy and value-added products. Elsevier Science, Amsterdam, S 1153

    Google Scholar 

  283. Nakamura T, Kawamoto H, Saka S (2007) Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature. J Wood Chem Technol 27:121–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofbauer, H., Kaltschmitt, M., Keil, F., Meier, D., Welling, J. (2016). Pyrolyse. In: Kaltschmitt, M., Hartmann, H., Hofbauer, H. (eds) Energie aus Biomasse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47438-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47438-9_14

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47437-2

  • Online ISBN: 978-3-662-47438-9

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics