Laboratory Models of Biofilms: Development and Assessment

  • Anil KishenEmail author
  • Markus Haapasalo
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 9)


Microbial biofilms are surface-adherent consortia formed by microbes and regulated by environmental changes. Currently, there are several reports on the existence of bacterial biofilms in infected root canal systems. Thus it is mandatory to simulate such biofilm modes in laboratory models for applied microbiological experiments in endodontics. This chapter covers different considerations for developing biofilm models in endodontics. In addition, different types of in vitro root canal biofilm models and the methods of assessment are described.


Confocal Laser Scanning Microscopy Root Canal Bacterial Adherence Root Canal System Conventional Scan Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Hashimi I, Levine MJ (1989) Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol 34(4):289–295PubMedCrossRefGoogle Scholar
  2. Badr AE, Omar N, Badria FA (2011) A laboratory evaluation of the antibacterial and cytotoxic effect of Liquorice when used as root canal medicament. Int Endod J 44(1):51–58PubMedCrossRefGoogle Scholar
  3. Bagge N et al (2004) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48(4):1168–1174PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bakke R, Kommedal R, Kalvenes S (2001) Quantification of biofilm accumulation by an optical approach. J Microbiol Methods 44(1):13–26PubMedCrossRefGoogle Scholar
  5. Bauer-Kreisel P, Eisenbeis M, Scholz-Muramatsu H (1996) Quantification of dehalospirillum multivorans in mixed-culture biofilms with an enzyme-linked immunosorbent assay. Appl Environ Microbiol 62(8):3050–3052PubMedCentralPubMedGoogle Scholar
  6. Baumgartner JC, Siqueira J Jr, Sedgley C, Kishen A (2008) Microbiology of endodontic disease. In: Ingle JI, Bakland LK, Baumgartner JC (eds) Ingle’s endodontics, BC Decker, OntarioGoogle Scholar
  7. Bhuva B, Patel S, Wilson R, Niazi S, Beighton D, Mannocci F (2010) The effectiveness of passive ultrasonic irrigation on intraradicular Enterococcus faecalis biofilms in extracted single-rooted human teeth. Int Endod J 43(3):241–250PubMedCrossRefGoogle Scholar
  8. Burnett SL, Chen J, Beuchat LR (2000) Attachment of Escherichia coli O157:H7 to the surfaces and internal structures of apples as detected by confocal scanning laser microscopy. Appl Environ Microbiol 66(11):4679–4687PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chávez de Paz LE, Bergenholtz G, Svensäter G (2010) The effects of antimicrobials on endodontic biofilm bacteria. J Endod 36(1):70–7PubMedCrossRefGoogle Scholar
  10. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3–4):217–221, discussion 237–9PubMedCrossRefGoogle Scholar
  11. Costerton JWL, Lewandowski Z (1997) The biofilm lifestyle. Adv Dent Res 11:192–195CrossRefGoogle Scholar
  12. Costerton JW, Stewart PS (2001) Battling biofilms. Sci Am 285(1):74–81PubMedCrossRefGoogle Scholar
  13. Costerton JW et al (1994) Biofilms, the customized microniche. J Bacteriol 176(8):2137–2142PubMedCentralPubMedGoogle Scholar
  14. Cowan MM, Taylor KG, Doyle RJ (1987) Energetics of the initial phase of adhesion of Streptococcus sanguis to hydroxylapatite. J Bacteriol 169(7):2995–3000PubMedCentralPubMedGoogle Scholar
  15. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867PubMedCentralPubMedCrossRefGoogle Scholar
  16. de Beer D et al (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43(11):1131–1138PubMedCrossRefGoogle Scholar
  17. del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82(2):204–209PubMedCrossRefGoogle Scholar
  18. Di Bonaventura G et al (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50(10):3269–3276PubMedCentralPubMedCrossRefGoogle Scholar
  19. Duggan JM, Sedgley CM (2007) Biofilm formation of oral and endodontic Enterococcus faecalis. J Endod 33(7):815–818PubMedCrossRefGoogle Scholar
  20. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51(3):675–690PubMedCrossRefGoogle Scholar
  21. Gaboriaud F, Dufrene YF (2007) Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids Surf B: Biointerfaces 54(1):10–19PubMedCrossRefGoogle Scholar
  22. George S, Kishen A (2007) Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt 12(3):034029PubMedCrossRefGoogle Scholar
  23. George S, Kishen A (2008) Augmenting the antibiofilm efficacy of advanced noninvasive light activated disinfection with emulsified oxidizer and oxygen carrier. J Endod 34(9):1119–1123PubMedCrossRefGoogle Scholar
  24. George S, Basrani B, Kishen A (2010) Possibilities of gutta-percha-centered infection in endodontically treated teeth: an in vitro study. J Endod 36(7):1241–1244PubMedCrossRefGoogle Scholar
  25. Grenier D, Mayrand D (1986) Nutritional relationships between oral bacteria. Infect Immun 53(3):616–620PubMedCentralPubMedGoogle Scholar
  26. Grivet JP, Delort AM, Portais JC (2003) NMR and microbiology: from physiology to metabolomics. Biochimie 85(9):823–840PubMedCrossRefGoogle Scholar
  27. Handley PS, Carter PL, Fielding J (1984) Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface. J Bacteriol 157(1):64–72PubMedCentralPubMedGoogle Scholar
  28. Handley PS et al (1985) Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun 47(1):217–227PubMedCentralPubMedGoogle Scholar
  29. Harraghy N et al (2006) Advances in in vitro and in vivo models for studying the staphylococcal factors involved in implant infections. Int J Artif Organs 29(4):368–378PubMedGoogle Scholar
  30. Heydorn A et al (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68(4):2008–2017PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hiraishi N, Yiu CK, King NM, Tagami J, Tay FR (2010) Antimicrobial efficacy of 3.8% silver diamine fluoride and its effect on root dentin. J Endod 36(6):1026–1029PubMedCrossRefGoogle Scholar
  32. Hope CK, Garton SG, Wang Q, Burnside G, Farrelly PJ (2010) A direct comparison between extracted tooth and filtermembrane biofilm models of endodontic irrigation using Enterococcus faecalis. Arch Microbiol 192(9):775–781PubMedCrossRefGoogle Scholar
  33. Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol 63(9):3724–3728PubMedCentralPubMedGoogle Scholar
  34. Jones SJ (1972) A special relationship between spherical and filamentous microorganisms in mature human dental plaque. Arch Oral Biol 17(3):613–616PubMedCrossRefGoogle Scholar
  35. Kindaichi T et al (2006) Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnol Bioeng 94(6):1111–1121PubMedCrossRefGoogle Scholar
  36. Kishen A, George S, Kumar R (2006) Enterococcus faecalis-mediated biomineralized biofilm formation on root canal dentine in vitro. J Biomed Mater Res A 77(2):406–415PubMedCrossRefGoogle Scholar
  37. Kishen A, Haapasalo M (2010) Biofilm models in endodontics. Endod Top 22(1):58–78CrossRefGoogle Scholar
  38. Kishen A et al (2008) Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin. J Endod 34(7):850–854PubMedCrossRefGoogle Scholar
  39. Kishen A, Upadya M, Tegos GP, Hamblin MR (2010) Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol 86(6):1343–1349PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kolenbrander PE et al (1995) Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect Immun 63(12):4584–4588PubMedCentralPubMedGoogle Scholar
  41. Kulasekara HD et al (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55(2):368–380PubMedCrossRefGoogle Scholar
  42. Lee HA et al (1990) Enzyme-linked immunosorbent assay for Salmonella typhimurium in food: feasibility of 1-day Salmonella detection. Appl Environ Microbiol 56(6):1541–1546PubMedCentralPubMedGoogle Scholar
  43. Lim Z et al (2009) Light activated disinfection: an alternative endodontic disinfection strategy. Aust Dent J 54(2):108–114PubMedCrossRefGoogle Scholar
  44. Liu H, Wei X, Ling J, Wang W, Huang X (2010) Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod 36(4):630–635PubMedCrossRefGoogle Scholar
  45. Lundstrom JR, Williamson AE, Villhauer AL, Dawson DV, Drake DR (2010) Bactericidal activity of stabilized chlorine dioxide as an endodontic irrigant in a polymicrobial biofilm tooth model system. J Endod 36(11):1874–1878PubMedCrossRefGoogle Scholar
  46. Main C et al (1984) Instrumentation for measurement of dental plaque thickness in situ. J Biomed Eng 6(2):151–154PubMedCrossRefGoogle Scholar
  47. Majors PD et al (2005) NMR methods for in situ biofilm metabolism studies. J Microbiol Methods 62(3):337–344PubMedCrossRefGoogle Scholar
  48. Marshall KC (1997) Colonization, adhesion and biofilms. In: Hurst CJK, Knudsen GR, McInerney MJ (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC, pp 358–365Google Scholar
  49. Marshall KC, Stout R, Mitchell R (1971) Selective sorption of bacteria from seawater. Can J Microbiol 17(11):1413–1416PubMedCrossRefGoogle Scholar
  50. Mathew S, Yaw-Chyn L, Kishen A (2010) Immunogenic potential of Enterococcus faecalis biofilm under simulated growth conditions. J Endod 36(5):832–836PubMedCrossRefGoogle Scholar
  51. Mattila-Sandholm TW, Wirtanen G (1992) Biofilm formation in the industry: a review. Food Rev Int 8:573–603CrossRefGoogle Scholar
  52. McAllister TA et al (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72(11):3004–3018PubMedGoogle Scholar
  53. McBain AJ (2009) Chapter 4: in vitro biofilm models: an overview. Adv Appl Microbiol 69:99–132PubMedCrossRefGoogle Scholar
  54. McGill S, Gulabivala K, Mordan N, Ng YL (2008) The efficacy of dynamic irrigation using a commercially available system (RinsEndo) determined by removal of a collagen ‘bio-molecular film’ from an ex vivo model. Int Endod J 41(7):602–608PubMedCrossRefGoogle Scholar
  55. McKinlay KJ et al (2004) Comparison of environmental scanning electron microscopy with high vacuum scanning electron microscopy as applied to the assessment of cell morphology. J Biomed Mater Res A 69(2):359–366PubMedCrossRefGoogle Scholar
  56. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol (Chapter 1: p. Unit 1B 1)Google Scholar
  57. Millsap KW et al (1997) Adhesion of Lactobacillus species in urine and phosphate buffer to silicone rubber and glass under flow. Biomaterials 18(1):87–91PubMedCrossRefGoogle Scholar
  58. Miron J, Ben-Ghedalia D, Morrison M (2001) Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84(6):1294–1309PubMedCrossRefGoogle Scholar
  59. Nair PN (2006) On the causes of persistent apical periodontitis: a review. Int Endod J 39(4):249–281PubMedCrossRefGoogle Scholar
  60. Nair PN et al (1990) Intraradicular bacteria and fungi in root-filled, asymptomatic human teeth with therapy-resistant periapical lesions: a long-term light and electron microscopic follow-up study. J Endod 16(12):580–588PubMedCrossRefGoogle Scholar
  61. Pavarina ACD, Dovigo LN, Sanitá PV, Machado AL, Giampaolo ET, Vergani CE (2011) Dynamic models for in vitro biofilm formation. In: Bailey WC (ed) Biofilms: formation, development and properties. Nova Science, New YorkGoogle Scholar
  62. Pappen FG, Shen Y, Qian W, Leonardo MR, Giardino L, Haapasalo M (2010) In vitro antibacterial action of Tetraclean, MTAD and five experimental irrigation solutions. Int Endod J 43(6):528–535PubMedCrossRefGoogle Scholar
  63. Perez-Osorio AC, Franklin MJ (2008) qRT-PCR of Microbial Biofilms. CSH Protoc 2008:p. pdb prot5066Google Scholar
  64. Postollec F et al (2006) Interactive forces between co-aggregating and non-co-aggregating oral bacterial pairs. J Dent Res 85(3):231–234PubMedCrossRefGoogle Scholar
  65. Pratten J, Ready D (2010) Use of biofilm model systems to study antimicrobial susceptibility. Methods Mol Biol 642:203–215PubMedCrossRefGoogle Scholar
  66. Ramachandran Nair PN (1987) Light and electron microscopic studies of root canal flora and periapical lesions. J Endod 13(1):29–39PubMedCrossRefGoogle Scholar
  67. Razatos A et al (1998) Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci 95(19):11059–11064PubMedCentralPubMedCrossRefGoogle Scholar
  68. Rosan B, Correeia FF, DiRienzo JM (1999) Corncobs: a model for oral microbial biofilms. In: Busscher HJ, Evans LV (eds) Oral biofilms and plaque control: concepts in dental plaque formation. Harwood Academic Publishers, India, pp 145–162Google Scholar
  69. Sainsbury AL, Bird PS, Walsh LJ (2009) DIAGNOdent laser fluorescence assessment of endodontic infection. J Endod 35(10):1404–7PubMedCrossRefGoogle Scholar
  70. Shahriari S, Mohammadi Z, Mokhtari MM, Yousefi R (2010) Effect of hydrogen peroxide on the antibacterial substantivity of chlorhexidine. Int J Dent 2010:946384PubMedCentralPubMedCrossRefGoogle Scholar
  71. Shen Y, Qian W, Chung C, Olsen I, Haapasalo M (2009) Evaluation of the effect of two chlorhexidine preparations on biofilm bacteria in vitro: a three-dimensional quantitative analysis. J Endod 35(7):981–985PubMedCrossRefGoogle Scholar
  72. Shen Y, Stojicic S, Haapasalo M (2010a) Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod 36(11):1820–1823PubMedCrossRefGoogle Scholar
  73. Shen Y, Stojicic S, Qian W, Olsen I, Haapasalo M (2010b) The synergistic antimicrobial effect by mechanical agitation and two chlorhexidine preparations on biofilm bacteria. J Endod 36(1):100–104PubMedCrossRefGoogle Scholar
  74. Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37(5):657–661PubMedCrossRefGoogle Scholar
  75. Sheppard CRJS, Shotton DM (1997) Confocal laser scanning microscopy. BIOS Scientific, OxfordGoogle Scholar
  76. Shrestha A, Shi Z, Neoh KG, Kishen A (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 36(6):1030–1035PubMedCrossRefGoogle Scholar
  77. Soares JA, de Carvalho MA R, Cunha Santos SM, Mendonça RM, Ribeiro-Sobrinho AP, Brito-Júnior M, Magalhães PP, Santos MH, de Macêdo Farias L (2010) Effectiveness of chemomechanical preparation with alternating use of sodium hypochlorite and EDTA in eliminating intracanal Enterococcus faecalis biofilm. J Endod 36(5):894–898PubMedCrossRefGoogle Scholar
  78. Stewart GS (1990) In vivo bioluminescence: new potentials for microbiology. Lett Appl Microbiol 10(1):1–8PubMedCrossRefGoogle Scholar
  79. Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60(8):2711–2716PubMedCentralPubMedGoogle Scholar
  80. Su L, Gao Y, Yu C, Wang H, Yu Q (2010) Surgical endodontic treatment of refractory periapical periodontitis with extraradicular biofilm. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(1):e40–4PubMedCrossRefGoogle Scholar
  81. Sum C et al (2008) Influence of endodontic chemical treatment on Enterococcus faecalis adherence to collagen studied with laser scanning confocal microscopy and optical tweezers: a preliminary study. J Biomed Opt 13(4):044017PubMedCrossRefGoogle Scholar
  82. Sun D, Accavitti MA, Bryers JD (2005) Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol 12(1):93–100PubMedCentralPubMedGoogle Scholar
  83. Sundqvist G, Figdor D (2003) Life as an endodontic pathogen: ecological differences between the untreated and root-filled root canals. Endod Topics 6(1):3–28CrossRefGoogle Scholar
  84. Sutton NA, Hughes N, Handley PS (1994) A comparison of conventional SEM techniques, low temperature SEM and the electroscan wet scanning electron microscope to study the structure of a biofilm of Streptococcus crista CR3. J Appl Bacteriol 76(5):448–454PubMedCrossRefGoogle Scholar
  85. Takeuchi K, Frank JF (2001) Expression of red-shifted green fluorescent protein by Escherichia coli O157:H7 as a marker for the detection of cells on fresh produce. J Food Prot 64(3):298–304PubMedGoogle Scholar
  86. Thurnheer T, Gmur R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56(1):37–47PubMedCrossRefGoogle Scholar
  87. Torabinejad M, Shabahang S, Aprecio RM, Kettering JD (2003) The antimicrobial effect of MTAD: an in vitro investigation. J Endod 29(6):400–403PubMedCrossRefGoogle Scholar
  88. Trachoo N, Frank JF (2002) Effectiveness of chemical sanitizers against Campylobacter jejuni-containing biofilms. J Food Prot 65(7):1117–1121PubMedGoogle Scholar
  89. Upadya MH, Kishen A (2010) Influence of bacterial growth modes on the susceptibility to light-activated disinfection. Int Endod J 43(11):978–987PubMedCrossRefGoogle Scholar
  90. Vadillo-Rodriguez V et al (2004) Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl Environ Microbiol 70(9):5441–5446PubMedCentralPubMedCrossRefGoogle Scholar
  91. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16(3):430–450PubMedCentralPubMedCrossRefGoogle Scholar
  92. Walker AJ, Stewart GSAB, Sheppard F, Bloomfield SF, Holah JT (1994) Bioluminescence imaging as a tool for studying biocide challenge upon plantonic and surface attached bacteria. Bin Comp Microbiol 6:16–17Google Scholar
  93. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34(3):586–595PubMedCentralPubMedCrossRefGoogle Scholar
  94. Williamson AE, Marker KL, Drake DR, Dawson DV, Walton RE (2009) Resin-based versus gutta-percha-based root canal obturation: influence on bacterial leakage in an in vitro model system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(2):292–296PubMedCrossRefGoogle Scholar
  95. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24(5):661–671PubMedCrossRefGoogle Scholar
  96. Wolfaardt GM et al (1993) Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl Environ Microbiol 59(8):2388–2396PubMedCentralPubMedGoogle Scholar
  97. Yavari HR et al (2010) Effect of Er, Cr: YSGG laser irradiation on Enterococcus faecalis in infected root canals. Photomed Laser Surg 28(Suppl 1):S91–S96PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of EndodonticsUniversity of TorontoTorontoCanada
  2. 2.Division of EndodonticsThe University of British ColumbiaVancouverCanada

Personalised recommendations