Skip to main content

Antimicrobial Resistance in Biofilm Communities

  • Chapter
The Root Canal Biofilm

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 9))

Abstract

Biofilms are composed of microcolonies encased in an extracellular polymeric substance (EPS) matrix. Wide-ranging differences exist between the biofilm and planktonic states in growth, structure, behavior, and physiology, all of which can have profound effects on their susceptibility to antimicrobials. Other factors that can contribute to the decreased susceptibility of biofilm microorganisms to antimicrobial agents include provision of a physical barrier to antimicrobial agents by the EPS matrix, facilitation of horizontal gene transfer (HGT) of DNA trapped within the extracellular matrix, quorum sensing and stress responses resulting in the recruitment and expression of resistance determinants such as multidrug resistance efflux pumps, the presence of persister cells that survive antibiotic treatment, and metabolic heterogeneity throughout the biofilm resulting in slow growth and protection against antibiotics active on rapidly growing bacteria. While further work is needed to fully understand antimicrobial resistance in biofilm communities, including the multispecies biofilms found in root canal infections, the accumulative effects of various processes, rather than individual involvement, are likely to be important. It is clear that much remains to be learned about the critical events in the development of antimicrobial resistance in biofilm communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absalon C, Van Dellen K, Watnick PI (2011) A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog 7, e1002210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349

    Google Scholar 

  • Adnan M, Morton G, Singh J et al (2010) Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655. Mol Cell Biochem 342:207–213

    Google Scholar 

  • Allegrucci M, Sauer K (2007) Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189:2030–2038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  CAS  PubMed  Google Scholar 

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bandara HM, Lam OL, Watt RM et al (2010) Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 59:1225–1234

    Google Scholar 

  • Barnes AM, Ballering KS, Leibman RS et al (2012) Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio 3:e00193–e00112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baugh S, Ekanayaka AS, Piddock LJ et al (2012) Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother 67:2409–2417

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner JC, Xia T (2003) Antibiotic susceptibility of bacteria associated with endodontic abscesses. J Endod 29:44–47

    Article  PubMed  Google Scholar 

  • Belitsky M, Avshalom H, Erental A et al (2011) The Escherichia coli extracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol Cell 41:625–635

    Article  CAS  PubMed  Google Scholar 

  • Benitez JA, Spelbrink RG, Silva A et al (1997) Adherence of Vibrio cholerae to cultured differentiated human intestinal cells: an in vitro colonization model. Infect Immun 65:3474–3477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhullar K, Waglechner N, Pawlowski A et al (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7, e34953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borriello G, Werner E, Roe F et al (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burmolle M, Webb JS, Rao D et al (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carr GB, Schwartz RS, Schaudinn C et al (2009) Ultrastructural examination of failed molar retreatment with secondary apical periodontitis: an examination of endodontic biofilms in an endodontic retreatment failure. J Endod 35:1303–1309

    Article  PubMed  Google Scholar 

  • Ceri H, Olson ME, Stremick C et al (1999) The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chavez de Paz LE, Lemos JA, Wickstrom C et al (2012) Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl Environ Microbiol 78:1627–1630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chia N, Woese CR, Goldenfeld N (2008) A collective mechanism for phase variation in biofilms. Proc Natl Acad Sci USA 105:14597–14602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciofu O (2003) Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS Suppl 116:1–47

    PubMed  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    Article  CAS  PubMed  Google Scholar 

  • Claverys JP, Havarstein LS (2007) Cannibalism and fratricide: mechanisms and raisons d’etre. Nat Rev Microbiol 5:219–229

    Article  CAS  PubMed  Google Scholar 

  • Claverys JP, Martin B, Havarstein LS (2007) Competence-induced fratricide in streptococci. Mol Microbiol 64:1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Clewell DB, Francia MV (2004) Conjugation in gram-positive bacteria. In: Funnell BE, Phillips GJ (eds) Plasmid biology. ASM Press, Washington, D.C., pp 227–256

    Chapter  Google Scholar 

  • Conlon KM, Humphreys H, O’Gara JP (2004) Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol 186:6208–6219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook L, Chatterjee A, Barnes A et al (2011) Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 81:1499–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23

    Article  CAS  PubMed  Google Scholar 

  • Cucarella C, Solano C, Valle J et al (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlen G, Magnusson BC, Moller A (1981) Histological and histochemical study of the influence of lipopolysaccharide extracted from Fusobacterium nucleatum on the periapical tissues in the monkey Macaca fascicularis. Arch Oral Biol 26:591–598

    Article  CAS  PubMed  Google Scholar 

  • Dahlen G, Samuelsson W, Molander A et al (2000) Identification and antimicrobial susceptibility of enterococci isolated from the root canal. Oral Microbiol Immunol 15:309–312

    Article  CAS  PubMed  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Beer D, Stoodley P, Roe F et al (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138

    Article  PubMed  Google Scholar 

  • de Sousa EL, Ferraz CC, Gomes BP et al (2003) Bacteriological study of root canals associated with periapical abscesses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:332–339

    Article  PubMed  Google Scholar 

  • Dieppois G, Ducret V, Caille O et al (2012) The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS ONE 7, e38148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorr T, Lewis K, Vulic M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5, e1000760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8, e1000317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  CAS  PubMed  Google Scholar 

  • Duan K, Dammel C, Stein J et al (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491

    Article  CAS  PubMed  Google Scholar 

  • Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479–3483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunny GM, Craig RA, Carron RL et al (1979) Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 2:454–465

    Article  CAS  PubMed  Google Scholar 

  • Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004

    Article  CAS  PubMed  Google Scholar 

  • Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699–709

    Article  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    Article  CAS  PubMed  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  CAS  PubMed  Google Scholar 

  • Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33:704–717

    Article  CAS  PubMed  Google Scholar 

  • Gomes BP, Jacinto RC, Montagner F et al (2011) Analysis of the antimicrobial susceptibility of anaerobic bacteria isolated from endodontic infections in Brazil during a period of nine years. J Endod 37:1058–1062

    Article  PubMed  Google Scholar 

  • Guisbert E, Yura T, Rhodius VA et al (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    PubMed Central  CAS  PubMed  Google Scholar 

  • Havarstein LS, Martin B, Johnsborg O et al (2006) New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol 59:1297–1307

    Article  CAS  PubMed  Google Scholar 

  • Hayes F, Van Melderen L (2011) Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 46:386–408

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Owen P, Nataro JP (1999) Molecular switches–the ON and OFF of bacterial phase variation. Mol Microbiol 33:919–932

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hentzer M, Wu H, Andersen JB et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J 22:3803–3815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  • Houry A, Gohar M, Deschamps J et al (2012) Bacterial swimmers that infiltrate and take over the biofilm matrix. Proc Natl Acad Sci USA 109:13088–13093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Islam S, Oh H, Jalal S et al (2009) Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect 15:60–66

    Article  CAS  PubMed  Google Scholar 

  • Iwahara K, Kuriyama T, Shimura S et al (2006) Detection of cfxA and cfxA2, the beta-lactamase genes of Prevotella spp., in clinical samples from dentoalveolar infection by real-time PCR. J Clin Microbiol 44:172–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izano EA, Amarante MA, Kher WB et al (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacinto RC, Gomes BP, Ferraz CC et al (2003) Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria. Oral Microbiol Immunol 18:285–292

    Article  CAS  PubMed  Google Scholar 

  • Jacinto RC, Gomes BP, Shah HN et al (2006) Incidence and antimicrobial susceptibility of Porphyromonas gingivalis isolated from mixed endodontic infections. Int Endod J 39:62–70

    Article  CAS  PubMed  Google Scholar 

  • Jacinto RC, Montagner F, Signoretti FG et al (2008) Frequency, microbial interactions, and antimicrobial susceptibility of Fusobacterium nucleatum and Fusobacterium necrophorum isolated from primary endodontic infections. J Endod 34:1451–1456

    Article  PubMed  Google Scholar 

  • Jalal S, Ciofu O, Hoiby N et al (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson EM, Flannagan SE, Sedgley CM (2006) Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis. J Endod 32:946–950

    Article  PubMed  Google Scholar 

  • Jungermann GB, Burns K, Nandakumar R et al (2011) Antibiotic resistance in primary and persistent endodontic infections. J Endod 37:1337–1344

    Article  PubMed Central  PubMed  Google Scholar 

  • Kara D, Luppens SB, Cate JM (2006) Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine. Eur J Oral Sci 114:58–63

    Article  CAS  PubMed  Google Scholar 

  • Kara D, Luppens SB, van Marle J et al (2007) Microstructural differences between single-species and dual-species biofilms of Streptococcus mutans and Veillonella parvula, before and after exposure to chlorhexidine. FEMS Microbiol Lett 271:90–97

    Article  CAS  PubMed  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  CAS  PubMed  Google Scholar 

  • Kelley WL (2006) Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 62:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Keren I, Kaldalu N, Spoering A et al (2004a) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  PubMed  Google Scholar 

  • Keren I, Shah D, Spoering A et al (2004b) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khemaleelakul S, Baumgartner JC, Pruksakorn S (2002) Identification of bacteria in acute endodontic infections and their antimicrobial susceptibility. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:746–755

    Article  PubMed  Google Scholar 

  • Khemaleelakul S, Baumgartner JC, Pruksakom S (2006) Autoaggregation and coaggregation of bacteria associated with acute endodontic infections. J Endod 32:312–318

    Article  PubMed  Google Scholar 

  • Kim Y, Oh S, Kim SH (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun 379:324–329

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Wang X, Zhang XS et al (2010) Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 12:1105–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirisits MJ, Prost L, Starkey M et al (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi K, Iwano M (2012) BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 85:51–66

    Article  CAS  PubMed  Google Scholar 

  • Kolenbrander PE, Palmer RJ Jr, Periasamy S et al (2010) Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8:471–480

    Article  CAS  PubMed  Google Scholar 

  • Konig C, Schwank S, Blaser J (2001) Factors compromising antibiotic activity against biofilms of Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis 20:20–26

    Article  CAS  PubMed  Google Scholar 

  • Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50:1199–1213

    Article  CAS  PubMed  Google Scholar 

  • Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD et al (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Le Goff A, Bunetel L, Mouton C et al (1997) Evaluation of root canal bacteria and their antimicrobial susceptibility in teeth with necrotic pulp. Oral Microbiol Immunol 12:318–322

    Article  PubMed  Google Scholar 

  • Leriche V, Briandet R, Carpentier B (2003) Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environ Microbiol 5:64–71

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Nair SK (2012) Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals. Protein Sci 21(10):1403–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YH, Hanna MN, Svensater G et al (2001a) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YH, Lau PC, Lee JH et al (2001b) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YH, Tang N, Aspiras MB et al (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Hsiao WW, Nandakumar R et al (2010) Analyzing endodontic infections by deep coverage pyrosequencing. J Dent Res 89:980–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Love RM, Jenkinson HF (2002) Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med 13:171–183

    Article  CAS  PubMed  Google Scholar 

  • Love RM, McMillan MD, Park Y et al (2000) Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin. Infect Immun 68:1359–1365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luppens SB, Kara D, Bandounas L et al (2008) Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm. Oral Microbiol Immunol 23:183–189

    Article  CAS  PubMed  Google Scholar 

  • Lynch DJ, Fountain TL, Mazurkiewicz JE et al (2007) Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett 268:158–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma L, Conover M, Lu H et al (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5, e1000354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Mah TF, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  • Mandsberg LF, Ciofu O, Kirkby N et al (2009) Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53:2483–2491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumura K, Furukawa S, Ogihara H et al (2011) Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69–72

    Article  CAS  PubMed  Google Scholar 

  • May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53:4628–4639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McDougald D, Rice SA, Barraud N et al (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50

    CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  PubMed  Google Scholar 

  • Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4, e1000213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mulcahy LR, Burns JL, Lory S et al (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliver A, Baquero F, Blazquez J (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Ozok AR, Persoon IF, Huse SM et al (2012) Ecology of the microbiome of the infected root canal system: a comparison between apical and coronal root segments. Int Endod J 45:530–541

    Article  CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro ET, Gomes BP, Ferraz CC et al (2003) Evaluation of root canal microorganisms isolated from teeth with endodontic failure and their antimicrobial susceptibility. Oral Microbiol Immunol 18:100–103

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro ET, Gomes BP, Drucker DB et al (2004) Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int Endod J 37:756–763

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67(9):2069–2089

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Ou Y, Yang L et al (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092

    Article  CAS  PubMed  Google Scholar 

  • Rachid S, Ohlsen K, Witte W et al (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44:3357–3363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rendueles O, Ghigo JM (2012) Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36(5):972–989

    Article  CAS  PubMed  Google Scholar 

  • Rendueles O, Travier L, Latour-Lambert P et al (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. MBio 2:e00043–e00011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rendueles O, Kaplan JB, Ghigo JM (2012) Antibiofilm polysaccharides. Environ Microbiol 15(2):334–346

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reynaud Af Geijersstam A, Culak R, Molenaar L et al (2007) Comparative analysis of virulence determinants and mass spectral profiles of Finnish and Lithuanian endodontic Enterococcus faecalis isolates. Oral Microbiol Immunol 22:87–94

    Article  CAS  PubMed  Google Scholar 

  • Rice LB (1998) Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother 42:1871–1877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ricucci D, Siqueira JF Jr (2010) Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod 36:1277–1288

    Article  PubMed  Google Scholar 

  • Ricucci D, Siqueira JF Jr, Bate AL et al (2009) Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod 35:493–502

    Article  PubMed  Google Scholar 

  • Roberts AP, Mullany P (2010) Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 8:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Rossi-Fedele G, Scott W, Spratt D et al (2006) Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. Oral Microbiol Immunol 21:218–222

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, Shoemaker NB, Stevens AM et al (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 59:579–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sauer K, Cullen MC, Rickard AH et al (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Article  CAS  PubMed  Google Scholar 

  • Sedgley CM, Molander A, Flannagan SE et al (2005) Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp. Oral Microbiol Immunol 20:10–19

    Article  CAS  PubMed  Google Scholar 

  • Sedgley CM, Lee EH, Martin MJ et al (2008) Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo. J Endod 34:570–574

    Article  PubMed  Google Scholar 

  • Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Siqueira JF Jr, Rocas IN (2005) Uncultivated phylotypes and newly named species associated with primary and persistent endodontic infections. J Clin Microbiol 43:3314–3319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siqueira JF Jr, Rocas IN, Ricucci D (2010) Biofilms in endodontic infections. Endod Topics 22:33–49

    Article  Google Scholar 

  • Siqueira JF Jr, Alves FR, Rocas IN (2011) Pyrosequencing analysis of the apical root canal microbiota. J Endod 37:1499–1503

    Article  PubMed  Google Scholar 

  • Skillman LC, Sutherland IW, Jones MV (1998) The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol 85(Suppl 1):13S–18S

    Article  PubMed  Google Scholar 

  • Skucaite N, Peciuliene V, Vitkauskiene A et al (2010) Susceptibility of endodontic pathogens to antibiotics in patients with symptomatic apical periodontitis. J Endod 36:1611–1616

    Article  PubMed  Google Scholar 

  • Sorensen SJ, Bailey M, Hansen LH et al (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710

    Article  CAS  PubMed  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 194:4485–4493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staal M, Borisov SM, Rickelt LF et al (2011) Ultrabright planar optodes for luminescence life-time based microscopic imaging of O2 dynamics in biofilms. J Microbiol Methods 85:67–74

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Britton RA, Grossman AD et al (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sternberg C, Christensen BB, Johansen T et al (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart PS (2012) Mini-review: convection around biofilms. Biofouling 28:187–198

    Article  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Suci PA, Mittelman MW, Yu FP et al (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38:2125–2133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Thomas VC, Thurlow LR, Boyle D et al (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190:5690–5698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas VC, Hiromasa Y, Harms N et al (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72:1022–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tielker D, Hacker S, Loris R et al (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Tormo MA, Ubeda C, Marti M et al (2007) Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology 153:1702–1710

    Article  CAS  PubMed  Google Scholar 

  • Trotonda MP, Manna AC, Cheung AL et al (2005) SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol 187:5790–5798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Upadya M, Shrestha A, Kishen A (2011) Role of efflux pump inhibitors on the antibiofilm efficacy of calcium hydroxide, chitosan nanoparticles, and light-activated disinfection. J Endod 37:1422–1426

    Article  PubMed  Google Scholar 

  • Valle J, Vergara-Irigaray M, Merino N et al (2007) sigmaB regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol 189:2886–2896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vigil GV, Wayman BE, Dazey SE et al (1997) Identification and antibiotic sensitivity of bacteria isolated from periapical lesions. J Endod 23:110–114

    Article  CAS  PubMed  Google Scholar 

  • Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41:1352–1358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER et al (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  CAS  PubMed  Google Scholar 

  • Walters MC 3rd, Roe F, Bugnicourt A et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Wood TK (2011) Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77:5577–5583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Kim Y, Hong SH et al (2011) Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol 7:359–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Werner E, Roe F, Bugnicourt A et al (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  CAS  PubMed  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  CAS  PubMed  Google Scholar 

  • Wiuff C, Zappala RM, Regoes RR et al (2005) Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother 49:1483–1494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Vulic M, Keren I et al (2012) Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother 56(9):4922–4926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zahller J, Stewart PS (2002) Transmission electron microscopic study of antibiotic action on Klebsiella pneumoniae biofilm. Antimicrob Agents Chemother 46:2679–2683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XQ, Bishop PL, Kupferle MJ (1998) Measurement of polysaccharides and proteins in biofilm extracellular polymers. Water Sci Technol 37:345–348

    Article  CAS  Google Scholar 

  • Zheng Z, Stewart PS (2002) Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 46:900–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu X, Wang Q, Zhang C et al (2010) Prevalence, phenotype, and genotype of Enterococcus faecalis isolated from saliva and root canals in patients with persistent apical periodontitis. J Endod 36:1950–1955

    Article  PubMed  Google Scholar 

  • Ziebuhr W, Krimmer V, Rachid S et al (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Sedgley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sedgley, C., Dunny, G. (2015). Antimicrobial Resistance in Biofilm Communities. In: Chávez de Paz, L., Sedgley, C., Kishen, A. (eds) The Root Canal Biofilm. Springer Series on Biofilms, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47415-0_3

Download citation

Publish with us

Policies and ethics