Molecular Principles of Adhesion and Biofilm Formation

  • Jens KrethEmail author
  • Mark C. Herzberg
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 9)


Oral bacteria are responsible for oral health and disease, including caries, periodontal disease, and endodontic infections. The development of oral diseases is intimately linked with the ability of oral bacteria to form and reside in an adherent multispecies consortium named biofilm. The oral biofilm provides a protective environment for the bacterial community and its formation is a genetically controlled process. In this chapter, we present a general overview of developmental mechanisms employed by individual members of the oral biofilm. The species composition of the oral biofilm and the oral microbiome is discussed historically and in the context of newly developed next-generation sequencing techniques. Furthermore, biofilm-specific regulatory mechanisms and phenotypic traits are explained to provide the reader with a comprehensive overview of oral biofilm formation and its role in health and disease.


Extracellular Polymeric Substance Dental Plaque Planktonic Cell Competence Development Periodontal Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the authors’ labs that is referred to in this chapter was supported by NIH-NIDCR R01DE021726, R00DE018400 and R03DE022601 (JK) and R01DE08590 (MCH).


  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aguirre A, Levine MJ, Cohen RE, Tabak LA (1987) Immunochemical quantitation of alpha-amylase and secretory IgA in parotid saliva from people of various ages. Arch Oral Biol 32:297–301PubMedCrossRefGoogle Scholar
  4. Allison KR, Brynildsen MP, Collins JJ (2011) Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14:593–598PubMedCentralPubMedCrossRefGoogle Scholar
  5. Amano A (2003) Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol 74:90–96PubMedCrossRefGoogle Scholar
  6. Amano A, Kuboniwa M, Nakagawa I, Akiyama S, Morisaki I, Hamada S (2000) Prevalence of specific genotypes of Porphyromonas gingivalis fimA and periodontal health status. J Dent Res 79:1664–1668PubMedCrossRefGoogle Scholar
  7. Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21:768–775PubMedCrossRefGoogle Scholar
  8. Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah TF (2012) The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol 194:3128–3136PubMedCentralPubMedCrossRefGoogle Scholar
  9. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009PubMedCentralPubMedCrossRefGoogle Scholar
  10. Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33:248–255PubMedCrossRefGoogle Scholar
  11. Belibasakis GN, Guggenheim B, Bostanci N (2012) Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis. Innate Immun 19(1):3–9PubMedCrossRefGoogle Scholar
  12. Benitez-Paez A, Belda-Ferre P, Simon-Soro A, Mira A (2014) Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics 15:311PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bigger JW (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet 2:497–500CrossRefGoogle Scholar
  14. Bik EM, Long CD, Armitage GC et al (2010) Bacterial diversity in the oral cavity. ISME J. 4(8):962–974Google Scholar
  15. Bizzini A, Beggah-Moller S, Moreillon P, Entenza JM (2006) Lack of in vitro biofilm formation does not attenuate the virulence of Streptococcus gordonii in experimental endocarditis. FEMS Immunol Med Microbiol 48:419–423PubMedCrossRefGoogle Scholar
  16. Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333(1):1–9PubMedCrossRefGoogle Scholar
  17. Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF (2010) The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 77:276–286PubMedCentralPubMedCrossRefGoogle Scholar
  18. Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu Rev Microbiol 60:451–475PubMedCrossRefGoogle Scholar
  19. Coenye T (2010) Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation. FEMS Immunol Med Microbiol 59:239–252PubMedGoogle Scholar
  20. Consortium HMP (2012a) A framework for human microbiome research. Nature 486:215–221CrossRefGoogle Scholar
  21. Consortium HMP (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  22. Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52PubMedCrossRefGoogle Scholar
  23. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  24. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  25. Cowan MM, Taylor KG, Doyle RJ (1987) Energetics of the initial phase of adhesion of Streptococcus sanguis to hydroxylapatite. J Bacteriol 169:2995–3000PubMedCentralPubMedGoogle Scholar
  26. Cvitkovitch DG (2001) Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med 12:217–243PubMedCrossRefGoogle Scholar
  27. Davies JR, Svensater G, Herzberg MC (2009) Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology 155:1977–1988PubMedCentralPubMedCrossRefGoogle Scholar
  28. Demuth DR, Irvine DC, Costerton JW, Cook GS, Lamont RJ (2001) Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect Immun 69:5736–5741PubMedCentralPubMedCrossRefGoogle Scholar
  29. Deng H, Ding Y, Fu MD, Xiao XR, Liu J, Zhou T (2004) Purification and characterization of sanguicin–a bacteriocin produced by Streptococcus sanguis. Sichuan Da Xue Xue Bao Yi Xue Ban 35:555–558PubMedGoogle Scholar
  30. Diamond G, Beckloff N, Ryan LK (2008) Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res 87:915–927PubMedCentralPubMedCrossRefGoogle Scholar
  31. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848PubMedCentralPubMedCrossRefGoogle Scholar
  32. Dunne WM Jr, Mason EO Jr, Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37:2522–2526PubMedCentralPubMedCrossRefGoogle Scholar
  33. Egland PG, Palmer RJ Jr, Kolenbrander PE (2004) Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 101:16917–16922PubMedCentralPubMedCrossRefGoogle Scholar
  34. Engels-Deutsch M, Pini A, Yamashita Y, Shibata Y, Haikel Y, Scholler-Guinard M, Klein JP (2003) Insertional inactivation of pac and rmlB genes reduces the release of tumor necrosis factor alpha, interleukin-6, and interleukin-8 induced by Streptococcus mutans in monocytic, dental pulp, and periodontal ligament cells. Infect Immun 71:5169–5177PubMedCentralPubMedCrossRefGoogle Scholar
  35. Engels-Deutsch M, Rizk S, Haikel Y (2011) Streptococcus mutans antigen I/II binds to alpha5beta1 integrins via its A-domain and increases beta1 integrins expression on periodontal ligament fibroblast cells. Arch Oral Biol 56:22–28PubMedCrossRefGoogle Scholar
  36. Eren AM, Borisy GG, Huse SM, Mark Welch JL (2014) Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci USA 111:E2875–E2884PubMedCentralPubMedCrossRefGoogle Scholar
  37. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  38. Frias-Lopez J, Duran-Pinedo A (2012) Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 194:2082–2095PubMedCentralPubMedCrossRefGoogle Scholar
  39. Fujimura S, Nakamura T (1979) Sanguicin, a bacteriocin of oral Streptococcus sanguis. Antimicrob Agents Chemother 16:262–265PubMedCentralPubMedCrossRefGoogle Scholar
  40. Gong K, Mailloux L, Herzberg MC (2000) Salivary film expresses a complex, macromolecular binding site for Streptococcus sanguis. J Biol Chem 275:8970–8974PubMedCrossRefGoogle Scholar
  41. Gorr SU (2012) Antimicrobial peptides in periodontal innate defense. Front Oral Biol 15:84–98PubMedCentralPubMedCrossRefGoogle Scholar
  42. Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27(6):409–419PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hall AR (1989) The Leeuwenhoek lecture, 1988. Antoni van Leeuwenhoek 1632–1723. Notes Rec R Soc Lond 43:249–273CrossRefGoogle Scholar
  44. Hall-Stoodley L, Stoodley P, Kathju S, Hoiby N, Moser C, William Costerton J, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145PubMedCrossRefGoogle Scholar
  45. Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13PubMedCrossRefGoogle Scholar
  46. Hasty DL, Ofek I, Courtney HS, Doyle RJ (1992) Multiple adhesins of streptococci. Infect Immun 60:2147–2152PubMedCentralPubMedGoogle Scholar
  47. He X, Ahn J (2011) Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. FEMS Microbiol Lett 325:180–188PubMedCrossRefGoogle Scholar
  48. He X, Wu C, Yarbrough D, Sim L, Niu G, Merritt J, Shi W, Qi F (2008) The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol 70:112–126PubMedCentralPubMedCrossRefGoogle Scholar
  49. He X, Hu W, He J, Guo L, Lux R, Shi W (2011) Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm. Mol Oral Microbiol 26:337–352PubMedCentralPubMedCrossRefGoogle Scholar
  50. Helmerhorst EJ, Hodgson R, van’t Hof W, Veerman EC, Allison C, Nieuw Amerongen AV (1999) The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 78:1245–1250PubMedCrossRefGoogle Scholar
  51. Heng NC, Tagg JR, Tompkins GR (2007) Competence-dependent bacteriocin production by Streptococcus gordonii DL1 (Challis). J Bacteriol 189:1468–1472PubMedCentralPubMedCrossRefGoogle Scholar
  52. Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedCrossRefGoogle Scholar
  53. Holmes AR, Gilbert C, Wells JM, Jenkinson HF (1998) Binding properties of Streptococcus gordonii SspA and SspB (antigen I/II family) polypeptides expressed on the cell surface of Lactococcus lactis MG1363. Infect Immun 66:4633–4639PubMedCentralPubMedGoogle Scholar
  54. Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242PubMedCentralPubMedCrossRefGoogle Scholar
  55. Itzek A, Zheng L, Chen Z, Merritt J, Kreth J (2011) Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol 193:6912–6922PubMedCentralPubMedCrossRefGoogle Scholar
  56. Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE (2008a) Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 190:3646–3657PubMedCentralPubMedCrossRefGoogle Scholar
  57. Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE (2008b) Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 66:637–644PubMedCentralPubMedCrossRefGoogle Scholar
  58. Jakubovics NS, Brittan JL, Dutton LC, Jenkinson HF (2009) Multiple adhesin proteins on the cell surface of Streptococcus gordonii are involved in adhesion to human fibronectin. Microbiology 155:3572–3580PubMedCentralPubMedCrossRefGoogle Scholar
  59. Jakubovics NS, Yassin SA, Rickard AH (2014) Community interactions of oral streptococci. Adv Appl Microbiol 87:43–110PubMedCrossRefGoogle Scholar
  60. Jenkinson HF, Lamont RJ (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8:175–200PubMedCrossRefGoogle Scholar
  61. Johnsborg O, Havarstein LS (2009) Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627–642PubMedCrossRefGoogle Scholar
  62. Johnsborg O, Eldholm V, Havarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778PubMedCrossRefGoogle Scholar
  63. Jonas K, Melefors O, Romling U (2009) Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 4:341–358PubMedCrossRefGoogle Scholar
  64. Kader A, Simm R, Gerstel U, Morr M, Romling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616PubMedCrossRefGoogle Scholar
  65. Kaplan JB (2011) Antibiotic-induced biofilm formation. Int J Artif Organs 34:737–751PubMedCrossRefGoogle Scholar
  66. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, ten Cate JM, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020PubMedCrossRefGoogle Scholar
  67. Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AH, Hamaker BR, Lemos JA, Koo H (2010) Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS ONE 5, e13478PubMedCentralPubMedCrossRefGoogle Scholar
  68. Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med 13:108–125PubMedCrossRefGoogle Scholar
  69. Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073PubMedCentralPubMedCrossRefGoogle Scholar
  70. Kreth J, Merritt J, Shi W, Qi F (2005a) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203PubMedCentralPubMedCrossRefGoogle Scholar
  71. Kreth J, Merritt J, Shi W, Qi F (2005b) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404PubMedCentralPubMedCrossRefGoogle Scholar
  72. Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640PubMedCentralPubMedCrossRefGoogle Scholar
  73. Kreth J, Vu H, Zhang Y, Herzberg MC (2009) Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J Bacteriol 191:6281–6291PubMedCentralPubMedCrossRefGoogle Scholar
  74. Kristian SA, Birkenstock TA, Sauder U, Mack D, Gotz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197:1028–1035PubMedCrossRefGoogle Scholar
  75. Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA 96:14547–14552PubMedCentralPubMedCrossRefGoogle Scholar
  76. Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, Shizukuishi S, Lamont RJ (2006) Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol 60:121–139PubMedCrossRefGoogle Scholar
  77. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380PubMedCrossRefGoogle Scholar
  78. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82:338–344PubMedCrossRefGoogle Scholar
  79. Labat-Robert J (2012) Cell-Matrix interactions, the role of fibronectin and integrins. A survey Pathol Biol (Paris) 60:15–19CrossRefGoogle Scholar
  80. Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44PubMedCentralPubMedCrossRefGoogle Scholar
  81. Lamkin MS, Oppenheim FG (1993) Structural features of salivary function. Crit Rev Oral Biol Med 4:251–259PubMedGoogle Scholar
  82. Lee MS, Morrison DA (1999) Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181:5004–5016PubMedCentralPubMedGoogle Scholar
  83. Lei Y, Zhang Y, Guenther BD, Kreth J, Herzberg MC (2011) Mechanism of adhesion maintenance by methionine sulphoxide reductase in Streptococcus gordonii. Mol Microbiol 80:726–738PubMedCentralPubMedCrossRefGoogle Scholar
  84. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372PubMedCrossRefGoogle Scholar
  85. Li L, Tanzer JM, Scannapieco FA (2002a) Identification and analysis of the amylase-binding protein B (AbpB) and gene (abpB) from Streptococcus gordonii. FEMS Microbiol Lett 212:151–157PubMedCrossRefGoogle Scholar
  86. Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002b) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708PubMedCentralPubMedCrossRefGoogle Scholar
  87. Liljemark WF, Bloomquist CG, Ofstehage JC (1979) Aggregation and adherence of Streptococcus sanguis: role of human salivary immunoglobulin A. Infect Immun 26:1104–1110PubMedCentralPubMedGoogle Scholar
  88. Liljemark WF, Bloomquist CG, Germaine GR (1981) Effect of bacterial aggregation on the adherence of oral streptococci to hydroxyapatite. Infect Immun 31:935–941PubMedCentralPubMedGoogle Scholar
  89. Lin X, Lamont RJ, Wu J, Xie H (2008) Role of differential expression of streptococcal arginine deiminase in inhibition of fimA expression in Porphyromonas gingivalis. J Bacteriol 190:4367–4371PubMedCentralPubMedCrossRefGoogle Scholar
  90. Lindh L (2002) On the adsorption behaviour of saliva and purified salivary proteins at solid/liquid interfaces. Swed Dent J Suppl 1–57Google Scholar
  91. Liu Y, Burne RA (2011) The major autolysin of Streptococcus gordonii is subject to complex regulation and modulates stress tolerance, biofilm formation, and extracellular-DNA release. J Bacteriol 193:2826–2837PubMedCentralPubMedCrossRefGoogle Scholar
  92. Maeda K, Nagata H, Kuboniwa M, Kataoka K, Nishida N, Tanaka M, Shizukuishi S (2004a) Characterization of binding of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase to Porphyromonas gingivalis major fimbriae. Infect Immun 72:5475–5477PubMedCentralPubMedCrossRefGoogle Scholar
  93. Maeda K, Nagata H, Nonaka A, Kataoka K, Tanaka M, Shizukuishi S (2004b) Oral streptococcal glyceraldehyde-3-phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis fimbriae. Microbes Infect 6:1163–1170PubMedCrossRefGoogle Scholar
  94. Maeda K, Nagata H, Yamamoto Y, Tanaka M, Tanaka J, Minamino N, Shizukuishi S (2004c) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae. Infect Immun 72:1341–1348PubMedCentralPubMedCrossRefGoogle Scholar
  95. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedCrossRefGoogle Scholar
  96. Marquis RE (1995) Oxygen metabolism, oxidative stress and acid–base physiology of dental plaque biofilms. J Ind Microbiol 15:198–207PubMedCrossRefGoogle Scholar
  97. Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294PubMedCrossRefGoogle Scholar
  98. Marsh PD (2009) Dental plaque as a biofilm: the significance of pH in health and caries. Compend Contin Educ Dent 30:76–78, 80, 83–77; quiz 88, 90PubMedGoogle Scholar
  99. Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y, Miyawaki S, Komatsuzawa H (2012) Association of CiaRH with resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol Oral Microbiol 27:124–135PubMedCrossRefGoogle Scholar
  100. McNab R, Lamont RJ (2003) Microbial dinner-party conversations: the role of LuxS in interspecies communication. J Med Microbiol 52:541–545PubMedCrossRefGoogle Scholar
  101. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284PubMedCentralPubMedCrossRefGoogle Scholar
  102. Merritt J, Qi F (2012) The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol 27:57–69PubMedCentralPubMedCrossRefGoogle Scholar
  103. Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122–1129PubMedCrossRefGoogle Scholar
  104. Murakami Y, Iwahashi H, Yasuda H, Umemoto T, Namikawa I, Kitano S, Hanazawa S (1996) Porphyromonas gingivalis fimbrillin is one of the fibronectin-binding proteins. Infect Immun 64:2571–2576PubMedCentralPubMedGoogle Scholar
  105. Naito Y, Gibbons RJ (1988) Attachment of Bacteroides gingivalis to collagenous substrata. J Dent Res 67:1075–1080PubMedCrossRefGoogle Scholar
  106. Naito M, Hirakawa H, Yamashita A et al (2008) Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res 15:215–225PubMedCentralPubMedCrossRefGoogle Scholar
  107. Nakamura T, Amano A, Nakagawa I, Hamada S (1999) Specific interactions between Porphyromonas gingivalis fimbriae and human extracellular matrix proteins. FEMS Microbiol Lett 175:267–272PubMedCrossRefGoogle Scholar
  108. Nguyen PT, Abranches J, Phan TN, Marquis RE (2002) Repressed respiration of oral streptococci grown in biofilms. Curr Microbiol 44:262–266PubMedCrossRefGoogle Scholar
  109. Nobbs AH, Vajna RM, Johnson JR, Zhang Y, Erlandsen SL, Oli MW, Kreth J, Brady LJ, Herzberg MC (2007a) Consequences of a sortase A mutation in Streptococcus gordonii. Microbiology 153:4088–4097PubMedCrossRefGoogle Scholar
  110. Nobbs AH, Zhang Y, Khammanivong A, Herzberg MC (2007b) Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol 189:3106–3114PubMedCentralPubMedCrossRefGoogle Scholar
  111. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450, Table of ContentsPubMedCentralPubMedCrossRefGoogle Scholar
  112. Nobbs AH, Jenkinson HF, Jakubovics NS (2011) Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 90:1271–1278PubMedCentralPubMedCrossRefGoogle Scholar
  113. Okahashi N, Nakata M, Sakurai A et al (2010) Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 391:1192–1196PubMedCrossRefGoogle Scholar
  114. Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219PubMedCrossRefGoogle Scholar
  115. Orstavik D, Kraus FW (1973) The acquired pellicle: immunofluorescent demonstration of specific proteins. J Oral Pathol 2:68–76PubMedCrossRefGoogle Scholar
  116. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783PubMedCentralPubMedCrossRefGoogle Scholar
  117. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000(42):80–87CrossRefGoogle Scholar
  118. Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM (2009) Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72:905–917PubMedCentralPubMedCrossRefGoogle Scholar
  119. Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC, Schork NJ, Bretz WA (2014) Functional expression of dental plaque microbiota. Front Cell Infect Microbiol 4:108PubMedCentralPubMedCrossRefGoogle Scholar
  120. Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425PubMedCentralPubMedCrossRefGoogle Scholar
  121. Qi F, Chen P, Caufield PW (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229PubMedCentralPubMedCrossRefGoogle Scholar
  122. Qi F, Chen P, Caufield PW (2001) The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21PubMedCentralPubMedCrossRefGoogle Scholar
  123. Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980PubMedCrossRefGoogle Scholar
  124. Rendueles O, Ghigo JM (2012) Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36(5):972–989PubMedCrossRefGoogle Scholar
  125. Rho M, Wu YW, Tang H, Doak TG, Ye Y (2012) Diverse CRISPRs evolving in human microbiomes. PLoS Genet 8, e1002441PubMedCentralPubMedCrossRefGoogle Scholar
  126. Rickard AH, Palmer RJ Jr, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456PubMedCrossRefGoogle Scholar
  127. Roberts AP, Kreth J (2014) The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome. Front Cell Infect Microbiol 4:124PubMedCentralPubMedCrossRefGoogle Scholar
  128. Rodriguez AM, Callahan JE, Fawcett P, Ge X, Xu P, Kitten T (2011) Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol Oral Microbiol 26:99–116PubMedCentralPubMedCrossRefGoogle Scholar
  129. Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607PubMedCrossRefGoogle Scholar
  130. Scannapieco FA, Bhandary K, Ramasubbu N, Levine MJ (1990) Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem Biophys Res Commun 173:1109–1115PubMedCrossRefGoogle Scholar
  131. Schlegel R, Slade HD (1972) Bacteriocin production by transformable group H streptococci. J Bacteriol 112:824–829PubMedCentralPubMedGoogle Scholar
  132. Scragg MA, Cannon SJ, Rangarajan M, Williams DM, Curtis MA (1999) Targeted disruption of fibronectin-integrin interactions in human gingival fibroblasts by the RI protease of Porphyromonas gingivalis W50. Infect Immun 67:1837–1843PubMedCentralPubMedGoogle Scholar
  133. Sedlacek MJ, Walker C (2007) Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 22:333–339PubMedCentralPubMedCrossRefGoogle Scholar
  134. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42PubMedCentralPubMedCrossRefGoogle Scholar
  135. Shemesh M, Tam A, Steinberg D (2007) Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153:1307–1317PubMedCrossRefGoogle Scholar
  136. Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37:657–661PubMedCrossRefGoogle Scholar
  137. Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134PubMedCrossRefGoogle Scholar
  138. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144PubMedCrossRefGoogle Scholar
  139. Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117PubMedCentralPubMedGoogle Scholar
  140. Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42:409–418PubMedCrossRefGoogle Scholar
  141. Tanaka H, Ebara S, Otsuka K, Hayashi K (1996) Adsorption of saliva-coated and plain streptococcal cells to the surfaces of hydroxyapatite beads. Arch Oral Biol 41:505–508PubMedCrossRefGoogle Scholar
  142. Tanzer JM, Grant L, Thompson A, Li L, Rogers JD, Haase EM, Scannapieco FA (2003) Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats' teeth by Streptococcus gordonii. Microbiology 149:2653–2660PubMedCrossRefGoogle Scholar
  143. Taxman DJ, Huang MT, Ting JP (2010) Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8:7–11PubMedCentralPubMedCrossRefGoogle Scholar
  144. Thurlow LR, Hanke ML, Fritz T et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596PubMedCentralPubMedCrossRefGoogle Scholar
  145. Thurnheer T, Gmur R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 69:1702–1709PubMedCentralPubMedCrossRefGoogle Scholar
  146. Torlakovic L, Klepac-Ceraj V, Ogaard B, Cotton SL, Paster BJ, Olsen I (2012) Microbial community succession on developing lesions on human enamel. J Oral Microbiol 4Google Scholar
  147. Tribble GD, Rigney TW, Dao DH, Wong CT, Kerr JE, Taylor BE, Pacha S, Kaplan HB (2012) Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. MBio 3Google Scholar
  148. Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci USA 108:4152–4157PubMedCentralPubMedCrossRefGoogle Scholar
  149. van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989PubMedCentralPubMedCrossRefGoogle Scholar
  150. van der Waaij D, Berghuis-de Vries JM, Lekkerkerk L-v (1971) Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 69:405–411CrossRefGoogle Scholar
  151. van Houte J (1994) Role of micro-organisms in caries etiology. J Dent Res 73:672–681PubMedGoogle Scholar
  152. Vernier-Georgenthum A, al-Okla S, Gourieux B, Klein JP, Wachsmann D (1998) Protein I/II of oral viridans streptococci increases expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro. Cell Immunol 187:145–150PubMedCrossRefGoogle Scholar
  153. Vickerman MM, Iobst S, Jesionowski AM, Gill SR (2007) Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189:7799–7807PubMedCentralPubMedCrossRefGoogle Scholar
  154. von Ohle C, Gieseke A, Nistico L, Decker EM, DeBeer D, Stoodley P (2010) Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 76:2326–2334CrossRefGoogle Scholar
  155. Vorrasi J, Chaudhuri B, Haase EM, Scannapieco FA (2010) Identification and characterization of amylase-binding protein C from Streptococcus mitis NS51. Mol Oral Microbiol 25:150–156PubMedCentralPubMedCrossRefGoogle Scholar
  156. Walker TS, Tomlin KL, Worthen GS et al (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701PubMedCentralPubMedCrossRefGoogle Scholar
  157. Ween O, Gaustad P, Havarstein LS (1999) Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol 33:817–827PubMedCrossRefGoogle Scholar
  158. Wei GX, Campagna AN, Bobek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109PubMedCrossRefGoogle Scholar
  159. Whatmore AM, Barcus VA, Dowson CG (1999) Genetic diversity of the streptococcal competence (com) gene locus. J Bacteriol 181:3144–3154PubMedCentralPubMedGoogle Scholar
  160. Wu YW, Rho M, Doak TG, Ye Y (2012) Oral spirochetes implicated in dental diseases are widespread in normal human subjects and carry extremely diverse integron gene cassettes. Appl Environ Microbiol 78:5288–5296PubMedCentralPubMedCrossRefGoogle Scholar
  161. Xie H, Cook GS, Costerton JW, Bruce G, Rose TM, Lamont RJ (2000) Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069PubMedCentralPubMedCrossRefGoogle Scholar
  162. Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64:4035–4039PubMedCentralPubMedGoogle Scholar
  163. Xu P, Alves JM, Kitten T et al (2007) Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189:3166–3175PubMedCentralPubMedCrossRefGoogle Scholar
  164. Yan W, Qu T, Zhao H, Su L, Yu Q, Gao J, Wu B (2010) The effect of c-di-GMP (3'-5'-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans. Microbiol Res 165:87–96PubMedCrossRefGoogle Scholar
  165. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259PubMedCentralPubMedCrossRefGoogle Scholar
  166. Zhang Y, Lei Y, Khammanivong A, Herzberg MC (2004) Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. Infect Immun 72:3489–3494PubMedCentralPubMedCrossRefGoogle Scholar
  167. Zhang Y, Lei Y, Nobbs A, Khammanivong A, Herzberg MC (2005) Inactivation of Streptococcus gordonii SspAB alters expression of multiple adhesin genes. Infect Immun 73:3351–3357PubMedCentralPubMedCrossRefGoogle Scholar
  168. Zhang Y, Whiteley M, Kreth J, Lei Y, Khammanivong A, Evavold JN, Fan J, Herzberg MC (2009) The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. Microbiology 155:165–173PubMedCentralPubMedCrossRefGoogle Scholar
  169. Zheng L, Itzek A, Chen Z, Kreth J (2011a) Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol 77:4318–4328PubMedCentralPubMedCrossRefGoogle Scholar
  170. Zheng LY, Itzek A, Chen ZY, Kreth J (2011b) Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. Int J Oral Sci 3:82–89PubMedCentralPubMedCrossRefGoogle Scholar
  171. Zhu L, Zhang Y, Fan J, Herzberg MC, Kreth J (2011) Characterization of competence and biofilm development of a Streptococcus sanguinis endocarditis isolate. Mol Oral Microbiol 26:117–126PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Diagnostic and Biological Sciences, School of Dentistry, Mucosal and Vaccine Research Center, Minneapolis VA Medical CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations