Advanced Therapeutic Options to Disinfect Root Canals

  • Anil KishenEmail author
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 9)


Bacterial biofilms in the root canals are challenging targets for conventional antimicrobial irrigants and medicaments. Advanced endodontic disinfection strategies are tested to enhance the antibiofilm effectiveness during root canal treatment. The primary goal of different advanced theraputic options is to eliminate intracanal biofilms from the anatomical complexities and uninstrumented portions of the root canal system, without producing deleterious effects on the host tissues. This chapter describes the challenges offered by bacterial biofilm as a therapeutic target and discusses the current antibiofilm options in root canal disinfection.


Extracellular Polymeric Substance Root Canal Bioactive Glass Dentinal Tubule YSGG Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al Cunningham, RR, Stewart P, Camper A, Stoodley P, Lennox J, Anderson V (2011) Center for Biofilm Engineering, Montana State University, Biofilms: hypertext book.
  2. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348PubMedCrossRefGoogle Scholar
  3. An YH, Stuart GW, McDowell SJ, McDaniel SE, Kang Q, Friedman RJ (1996) Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. J Orthop Res 14:846–849PubMedCrossRefGoogle Scholar
  4. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824PubMedCentralPubMedCrossRefGoogle Scholar
  5. Arita M, Nagayoshi M, Fukuizumi T, Okinaga T, Masumi S, Morikawa M, Kakinoki Y, Nishihara T (2005) Microbicidal efficacy of ozonated water against Candida albicans adhering to acrylic denture plates. Oral Microbiol Immunol 20:206–210PubMedCrossRefGoogle Scholar
  6. Armon E, Laufer G (1995) Analysis to determine the beam parameters which yield the most extensive cut with the least secondary damage. J Biomech Eng 107:286–290CrossRefGoogle Scholar
  7. Azarpazhooh A, Limeback H (2008) The application of ozone in dentistry: a systematic review of literature. J Dent 36:104–116PubMedCrossRefGoogle Scholar
  8. Basrani BR, Manek S, Sodhi RN, Fillery E, Manzur A (2007) Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod 33:966–969PubMedCrossRefGoogle Scholar
  9. Baumgartner JC, Siqueira JF, Sedgley CM, Anil K (2008) Microbiology of endodontic disease. In: Ingle JI, Bakland LK, Baumgartner JC (eds) Ingle’s endodontics, 6th edn. BC Decker, Ontario, pp 221–222Google Scholar
  10. Beard SJ, Hughes MN, Poole RK (1995) Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 131:205–210PubMedCrossRefGoogle Scholar
  11. Bergmans L, Moisiadis P, Teughels W, Van Meerbeek B, Quirynen M, Lambrechts P (2006) Bactericidal effect of Nd:YAG laser irradiation on some endodontic pathogens ex vivo. Int Endod J 39:547–557PubMedCrossRefGoogle Scholar
  12. Bertoloni G, Lauro FM, Cortella G, Merchat M (2000) Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim Biophys Acta 1475:169–174PubMedCrossRefGoogle Scholar
  13. Blanken J, De Moor RJ, Meire M, Verdaasdonk R (2009) Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study. Lasers Surg Med 41:514–519PubMedCrossRefGoogle Scholar
  14. Bonsor SJ, Nichol R, Reid TM, Pearson GJ (2006a) Microbiological evaluation of photo-activated disinfection in endodontics (an in vivo study). Br Dent J 25:337–341CrossRefGoogle Scholar
  15. Bonsor SJ, Nichol R, Reid TM, Pearson GJ (2006b) An alternative regimen for root canal disinfection. Br Dent J 201:101–105PubMedCrossRefGoogle Scholar
  16. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333PubMedCrossRefGoogle Scholar
  17. Busscher HJ, van der Mei HC (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32PubMedCrossRefGoogle Scholar
  18. Busscher HJ, Bos R, van der Mei HC (1995) Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett 128:229–234PubMedCrossRefGoogle Scholar
  19. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132PubMedCrossRefGoogle Scholar
  20. Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616PubMedCrossRefGoogle Scholar
  21. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217–221PubMedCrossRefGoogle Scholar
  22. Costerton JWLZ, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142PubMedCentralPubMedGoogle Scholar
  23. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedCentralPubMedGoogle Scholar
  24. Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infections–state of the art. Photodiagnosis Photodyn Ther 6:170–188PubMedCentralPubMedCrossRefGoogle Scholar
  25. De Moor RJ, Blanken J, Meire M, Verdaasdonk R (2009) Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med 41:520–523PubMedCrossRefGoogle Scholar
  26. del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82:204–209PubMedCrossRefGoogle Scholar
  27. Denyer SP, Maillard JY (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J Appl Microbiol 92:35S–45SPubMedCrossRefGoogle Scholar
  28. Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740PubMedCentralPubMedCrossRefGoogle Scholar
  29. Dostálová T, Jelínková H, Housová D, Sulc J, Nemeć M, Dusková J, Miyagi M, Krátky M (2002) Endodontic treatment with application of Er:YAG laser waveguide radiation disinfection. J Clin Laser Med Surg 20:135–139PubMedCrossRefGoogle Scholar
  30. Dunne WM Jr, Mason EO Jr, Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37:2522–2526PubMedCentralPubMedCrossRefGoogle Scholar
  31. Duthie G, Crozier A (2000) Plant-derived phenolic antioxidants. Curr Opin Clin Nutr Metab Care 3:447–451PubMedCrossRefGoogle Scholar
  32. Ebensberger U, Pohl Y, Filippi A (2002) PCNA-expression of cementoblasts and fibroblasts on the root surface after extraoral rinsing for decontamination. Dent Traumatol 18:262–266PubMedCrossRefGoogle Scholar
  33. Estrela C, Estrela CR, Decurcio DA, Hollanda AC, Silva JA (2007) Antimicrobial efficacy of ozonated water, gaseous ozone, sodium hypochlorite and chlorhexidine in infected human root canals. Int Endod J 40(2):85–93PubMedCrossRefGoogle Scholar
  34. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668PubMedCrossRefGoogle Scholar
  35. Fried D, Glena RE, Featherstone JD, Seka W (1995) Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt 34:1278–1285PubMedCrossRefGoogle Scholar
  36. Friedman S (2002) Prognosis of initial endodontic therapy. Endod Top 2:59–88CrossRefGoogle Scholar
  37. Garcez AS, Nuñez SC, Hamblin MR, Ribeiro MS (2008) Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod 34:138–142PubMedCentralPubMedCrossRefGoogle Scholar
  38. Garcez AS, Nuñez SC, Hamblim MR, Suzuki H, Ribeiro MS (2010) Photodynamic therapy associated with conventional endodontic treatment in patients with antibiotic-resistant microflora: a preliminary report. J Endod 36(9):1463–1466PubMedCrossRefGoogle Scholar
  39. George S, Kishen A (2007a) Advanced noninvasive light-activated disinfection: assessment of cytotoxicity on fibroblast versus antimicrobial activity against Enterococcus faecalis. J Endod 33:599–602PubMedCrossRefGoogle Scholar
  40. George S, Kishen A (2007b) Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt 12:034029PubMedCrossRefGoogle Scholar
  41. George S, Kishen A (2008a) Influence of photosensitizer solvent on the mechanisms of photoactivated killing of Enterococcus faecalis. Photochem Photobiol 84:734–740PubMedCrossRefGoogle Scholar
  42. George S, Kishen A (2008b) Augmenting the anti-biofilm efficacy of Advanced Noninvasive Light Activated Disinfection with emulsified oxidizer and oxygen carrier. J Endod 34:1119–1123PubMedCrossRefGoogle Scholar
  43. George R, Walsh LJ (2011) Performance assessment of novel side firing safe tips for endodontic applications. J Biomed Opt 16:048004PubMedCrossRefGoogle Scholar
  44. Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:98S–110SPubMedCrossRefGoogle Scholar
  45. Goodis HE, Pashley D, Stabholz A (2002) Pulpal effects of thermal and mechanical irritant. In: Hargreaves KM, Goodis HE (eds) Seltzer and Benderís dental pulp. Quintessence, Hanover Park, IL, pp 371–410Google Scholar
  46. Gubler M, Brunner TJ, Zehnder M, Waltimo T, Sener B, Stark WJ (2008) Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH? Int Endod J 41:670–678PubMedCrossRefGoogle Scholar
  47. Guinesi AS, Andolfatto C, Bonetti Filho I, Cardoso AA, Passaretti Filho J, Farac RV (2011) Ozonized oils: a qualitative and quantitative analysis. Braz Dent J 22:37–40PubMedGoogle Scholar
  48. Gurbuz T, Ozdemir Y, Kara N, Zehir C, Kurudirek M (2008) Evaluation of root canal dentin after Nd:YAG laser irradiation and treatment with five different irrigation solutions: a preliminary study. J Endod 34:318–321PubMedCrossRefGoogle Scholar
  49. Habelitz S, Balooch M, Marshall SJ, Balooch G, Marshall GW Jr (2002) In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol 138:227–236PubMedCrossRefGoogle Scholar
  50. Hamblin MR, O'Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME, Hasan T (2002) Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother 49:941–951PubMedCrossRefGoogle Scholar
  51. Hems RS, Gulabivala K, Ng YL, Ready D, Spratt DA (2005) An in vitro evaluation of the ability of ozone to kill a strain of Enterococcus faecalis. Int Endod J 38:22–29PubMedCrossRefGoogle Scholar
  52. Huth KC, Jakob FM, Saugel B, Cappello C, Paschos E, Hollweck R, Hickel R, Brand K (2006) Effect of ozone on oral cells compared with established antimicrobials. Eur J Oral Sci 114:435–440PubMedCrossRefGoogle Scholar
  53. Jagani S, Chelikani R, Kim DS (2009) Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 25:321–324PubMedCrossRefGoogle Scholar
  54. Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173PubMedCrossRefGoogle Scholar
  55. Kandaswamy D, Venkateshbabu N, Gogulnath D, Kindo AJ (2010) Dentinal tubule disinfection with 2 % chlorhexidine gel, propolis, morinda citrifolia juice, 2 % povidone iodine, and calcium hydroxide. Int Endod J 43:419–423PubMedCrossRefGoogle Scholar
  56. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101PubMedCrossRefGoogle Scholar
  57. Kimura Y, Tanabe M, Imai H, Amano Y, Masuda Y, Yamada Y (2011) Histological examination of experimentally infected root canals after preparation by Er:YAG laser irradiation. Lasers Med Sci 26:749–754PubMedCrossRefGoogle Scholar
  58. Kishen A (2010) Advanced therapeutic options for endodontic biofilms. Endod Top 22(1):99–123CrossRefGoogle Scholar
  59. Kishen A, Shi Z, Neoh KG (2008a) Antibacterial nanoparticulates to prevent post-treatment endodontic infection. J Endod 34:15–20Google Scholar
  60. Kishen A, Sum CP, Mathew S, Lim CT (2008b) Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin. J Endod 34:850–854PubMedCrossRefGoogle Scholar
  61. Kishen A, Shi Z, Shrestha A, Neoh KG (2008c) An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 34:1515–1520PubMedCrossRefGoogle Scholar
  62. Kishen A, Upadya M, Tegos GP, Hamblin MR (2010) Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol 86:1343–1349PubMedCentralPubMedCrossRefGoogle Scholar
  63. Klepac-Ceraj V, Patel N, Song X, Holewa C, Patel C, Kent R, Amiji MM, Soukos NS (2011) Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria. Lasers Surg Med 43:600–606PubMedCentralPubMedCrossRefGoogle Scholar
  64. Koba K, Kimura Y, Matsumoto K, Gomyoh H, Komi S, Harada S, Tsuzuki N, Shimada Y (1999) A clinical study on the effects of pulsed Nd:YAG laser irradiation at root canals immediately after pulpectomy and shaping. J Clin Laser Med Surg 17:53–56PubMedGoogle Scholar
  65. Kömerik N, Wilson M, Poole S (2000) The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochem Photobiol 72:676–680PubMedCrossRefGoogle Scholar
  66. Kubo I, Muroi H, Himejima M (1992) Antibacterial activity of totarol and its potentiation. J Nat Prod 55:1436–1440PubMedCrossRefGoogle Scholar
  67. Kubo I, Nihei K, Tsujimoto K (2003) Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). J Agric Food Chem 51:7624–7628PubMedCrossRefGoogle Scholar
  68. Kuştarci A, Sümer Z, Altunbaş D, Koşum S (2009) Bactericidal effect of KTP laser irradiation against Enterococcus faecalis compared with gaseous ozone: an ex vivo study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:e73–e79PubMedCrossRefGoogle Scholar
  69. Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382PubMedCentralPubMedCrossRefGoogle Scholar
  70. Lawrence JR, Wolfaardt GM, Korber DR (1994) Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl Environ Microbiol 60:1166–1173PubMedCentralPubMedGoogle Scholar
  71. Leonardo MR, Guillén-Carías MG, Pécora JD, Ito IY, Silva LA (2005) Er:YAG laser: antimicrobial effects in the root canals of dogs’ teeth with pulp necrosis and chronic periapical lesions. Photomed Laser Surg 23:295–299PubMedCrossRefGoogle Scholar
  72. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochem Mosc 70:267–274CrossRefGoogle Scholar
  73. Li RW, Myers SP, Leach DN, Lin GD, Leach G (2003) A cross-cultural study: anti-inflammatory activity of Australian and Chinese plants. J Ethnopharmacol 85(1):25–32PubMedCrossRefGoogle Scholar
  74. Marchesan MA, Brugnera-Junior A, Souza-Gabriel AE, Correa-Silva SR, Sousa-Neto MD (2008) Ultrastructural analysis of root canal dentine irradiated with 980-nm diode laser energy at different parameters. Photomed Laser Surg 26:235–240PubMedCrossRefGoogle Scholar
  75. Marshall GW Jr, Balooch M, Kinney JH, Marshall SJ (1995) Atomic force microscopy of conditioning agents on dentin. J Biomed Mater Res 29:1381–1387PubMedCrossRefGoogle Scholar
  76. Meire MA, De Prijck K, Coenye T, Nelis HJ, De Moor RJ (2009) Effectiveness of different laser systems to kill Enterococcus faecalis in aqueous suspension and in an infected tooth model. Int Endod J 42:351–359PubMedCrossRefGoogle Scholar
  77. Menezes S, Capella MA, Caldas LR (1990) Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol B Biol 5:505–517CrossRefGoogle Scholar
  78. Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G (1996) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B Biol 32:153–157CrossRefGoogle Scholar
  79. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown ST (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B Biol 32:159–164CrossRefGoogle Scholar
  80. Miserendino L, Robert PM (1995) Lasers in Dentistry. Quintessence, Hanover Park, ILGoogle Scholar
  81. Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553PubMedCrossRefGoogle Scholar
  82. Mohn D, Bruhin C, Luechinger NA, Stark WJ, Imfeld T, Zehnder M (2010) Composites made of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties. Int Endod J 43:1037–1046PubMedCrossRefGoogle Scholar
  83. Moriyama EH, Zângaro RA, Villaverde AB, Lobo PD, Munin E, Watanabe IS, Júnior DR, Pacheco MT (2004) Dentin evaluation after Nd:YAG laser irradiation using short and long pulses. J Clin Laser Med Surg 22:43–50PubMedCrossRefGoogle Scholar
  84. Moshonov J, Orstavik D, Yamauchi S, Pettiette M, Trope M (1995) Nd:YAG laser irradiation in root canal disinfection. Endod Dent Traumatol 11:220–224PubMedCrossRefGoogle Scholar
  85. Murray PE, Farber RM, Namerow KM, Kuttler S, Godoy FG (2008) Evaluation of Morinda citrifolia as an endodontic irrigant. J Endod 34:66–70PubMedCrossRefGoogle Scholar
  86. Nagayoshi M, Kitamura C, Fukuizumi T, Nishihara T, Terashita M (2004) Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. J Endod 30:778–781PubMedCrossRefGoogle Scholar
  87. Nair PNR (1987) Light and electron microscopic studies of root canal flora and periapical lesions. J Endod 13:29–39CrossRefGoogle Scholar
  88. Nair PNR (2006) On the causes of persistent apical periodontitis: a review. Int Endod J 39:249–281PubMedCrossRefGoogle Scholar
  89. Nair PNR, Sjögren U, Krey G, Kahnberg K-E, Sundqvist G (1990) Intraradicular bacteria and fungi in root-filled, asymptomatic human teeth with therapy-resistant periapical lesions: a long-term light and electron microscopic follow-up study. J Endod 16:580–588PubMedCrossRefGoogle Scholar
  90. Nair PN, Henry S, Cano V, Vera J (2005) Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:231–252PubMedCrossRefGoogle Scholar
  91. Ng RPY (2004) Sterilization in root canal treatment: current advances. Hong Kong Dent J 1:52–57Google Scholar
  92. Nichols WW, Evans MJ, Slack MPE, Walmsley HL (1989) The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 135:1291–1303PubMedGoogle Scholar
  93. Noguchi F, Kitamura C, Nagayoshi M, Chen KK, Terashita M, Nishihara T (2009) Ozonated water improves lipopolysaccharide-induced responses of an odontoblast-like cell line. J Endod 35:668–672PubMedCrossRefGoogle Scholar
  94. Noiri Y, Katsumoto T, Azakami H, Ebisu S (2008) Effects of Er:YAG laser irradiation on biofilm-forming bacteria associated with endodontic pathogens in vitro. J Endod 34:826–829PubMedCrossRefGoogle Scholar
  95. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, Foschi F, Dunham J, Skobe Z, Yamazaki H, Kent R, Tanner AC, Amiji MM, Soukos NS (2010) Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 36:322–328PubMedCentralPubMedCrossRefGoogle Scholar
  96. Paraskeva P, Graham NJ (2002) Ozonation of municipal wastewater effluents. Water Environ Res 74:569–581PubMedCrossRefGoogle Scholar
  97. Peters OA, Bardsley S, Fong J, Pandher G, Divito E (2011) Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod 37:1008–1012PubMedCrossRefGoogle Scholar
  98. Polo L, Segalla A, Bertoloni G, Jori G, Schaffner K, Reddi E (2000) Polylysine-porphycene conjugates as efficient photosensitizers for the inactivation of microbial pathogens. J Photochem Photobiol B Biol 59:152–158CrossRefGoogle Scholar
  99. Prabhakar J, Senthilkumar M, Priya MS, Mahalakshmi K, Sehgal PK, Sukumaran VG (2010) Evaluation of antimicrobial efficacy of herbal alternatives (Triphala and green tea polyphenols), MTAD, and 5 % sodium hypochlorite against Enterococcus faecalis biofilm formed on tooth substrate: an in vitro study. J Endod 36:83–86PubMedCrossRefGoogle Scholar
  100. Prasad PN (2003) Introduction to biophotonics. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  101. Prince AS (2002) Biofilms, antimicrobial resistance, and airway infection. N Engl J Med 347:1110–1111PubMedCrossRefGoogle Scholar
  102. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465PubMedCrossRefGoogle Scholar
  103. Rasmussen K, Lewandowski Z (1998) Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59:302–309PubMedCrossRefGoogle Scholar
  104. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 24:2139021–2139023Google Scholar
  105. Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61:3471–3475PubMedCentralPubMedGoogle Scholar
  106. Ricucci D, Siqueira JF Jr (2010) Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod 36:1277–1288PubMedCrossRefGoogle Scholar
  107. Rooney J, Midda M, Leeming J (1994) A laboratory investigation of the bactericidal effect of a Nd:YAG laser. Br Dent J 17:61–64CrossRefGoogle Scholar
  108. Rosan B, Correeia FF, DiRienzo JM (1999) Corncobs: a model for oral microbial biofilms. In: Busscher HJ, Evans LV (eds) Oral biofilms and plaque control: concepts in dental plaque formation, Harwood Academic Publishers, The Netherlands, pp 145–162Google Scholar
  109. Rukkumani R, Sri Balasubashini M, Menon VP (2003) Protective effects of curcumin and photo-irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid-induced toxicity. Phytother Res 17:925–929PubMedCrossRefGoogle Scholar
  110. Ryan BM, Dougherty TJ, Beaulieu D, Chuang J, Dougherty BA, Barrett JF (2001) Efflux in bacteria: what do we really know about it? Expert Opin Investig Drugs 10:1409–1422PubMedCrossRefGoogle Scholar
  111. Sadovskaya I, Chaignon P, Kogan G, Chokr A, Vinogradov E, Jabbouri S (2006) Carbohydrate-containing components of biofilms produced in vitro by some staphylococcal strains related to orthopaedic prosthesis infections. FEMS Immunol Med Microbiol 47:75–82PubMedCrossRefGoogle Scholar
  112. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182PubMedCrossRefGoogle Scholar
  113. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioengin 86:521–522CrossRefGoogle Scholar
  114. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W (2004) Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med 35:111–116PubMedCrossRefGoogle Scholar
  115. Shen HR, Spikes JD, Kopecekova P, Kopecek J (1996) Photodynamic crosslinking of proteins I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl) methacrylamide co-polymers. J Photochem Photobiol B Biol 34:203–210CrossRefGoogle Scholar
  116. Shrestha A, Kishen A (2011) Polycationic chitosan conjugated photosensitizer for antibacterial photodynamic therapy. Photochem Photobiol. doi: 10.1111/j.1751-1097.2011.01026.x PubMedGoogle Scholar
  117. Shrestha A, Shi Z, Neoh KG, Kishen A (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 36:1030–1035PubMedCrossRefGoogle Scholar
  118. Silveira AM, Lopes HP, Siqueira JF Jr, Macedo SB, Consolaro A (2007) Periradicular repair after two-visit endodontic treatment using two different intracanal medications compared to single-visit endodontic treatment. Braz Dent J 18:299–304PubMedCrossRefGoogle Scholar
  119. Soncin M, Fabris C, Busetti A, Dei D, Nistri D, Roncucci G, Jori G (2002) Approaches to selectivity in the Zn(II)–phthalocyanine photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochem Photobiol Sci 1:815–819PubMedCrossRefGoogle Scholar
  120. Soukos NS, Wilson M, Burns T, Speight PM (1996) Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg Med 18:253–259PubMedCrossRefGoogle Scholar
  121. Soukos NS, Hamblin MR, Hasan T (1997) The effect of charge on cellular uptake and phototoxicity of polylysine chlorin e6 conjugates. Photochem Photobiol 65:723–729PubMedCrossRefGoogle Scholar
  122. Soukos NS, Chen PS, Morris JT, Ruggiero K, Abernethy AD, Som S, Foschi F, Doucette S, Bammann LL, Fontana CR, Doukas AG, Stashenko PP (2006) Photodynamic therapy for endodontic disinfection. J Endod 32:979–984PubMedCrossRefGoogle Scholar
  123. Stabholz A, Zeltser R, Sela M, Peretz B, Moshonov J, Ziskind D, Stabholz A (2003) The use of lasers in dentistry: principles of operation and clinical applications. Compend Contin Educ Dent 24:935–948PubMedGoogle Scholar
  124. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336PubMedCrossRefGoogle Scholar
  125. Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716PubMedCentralPubMedGoogle Scholar
  126. Stoor P, Söderling E, Salonen JI (1998) Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 56:161–165PubMedCrossRefGoogle Scholar
  127. Sundqvist G, Figdor D (2003) Life as an endodontic pathogen: ecological differences between the untreated and root-filled root canals. Endod Topics 6:3–28CrossRefGoogle Scholar
  128. Tegos G, Hamblin MR (2006) Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 50:196–203PubMedCentralPubMedCrossRefGoogle Scholar
  129. Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR (2008) Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother 52:3202–3209PubMedCentralPubMedCrossRefGoogle Scholar
  130. van Leeuwen TG, Jansen ED, Motamedi M, Borst C, Welch AJ (1995) Pulsed laser ablation of soft tissue. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New YorkGoogle Scholar
  131. Viera MR, Guiamet PS, de Mele MFL, Videla HA (1999) Use of dissolved ozone for controlling planktonic and sessile bacteria in industrial cooling systems. Int Biodeter Biodegrad 44:201–207CrossRefGoogle Scholar
  132. Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41:1352–1358PubMedCentralPubMedGoogle Scholar
  133. Wainwright M, Crossley KB (2002) Methylene blue–a therapeutic dye for all seasons? J Chemother 14:431–443PubMedCrossRefGoogle Scholar
  134. Wainwright M, Giddens RM (2003) Phenothiazinium photosensitisers: choices in synthesis and application. Dyes Pigm 57:245–257CrossRefGoogle Scholar
  135. Wakayama Y, Takagi M, Yano K (1980) Photosensitized inactivation of E. coli cells in toluidine blue-light system. Photochem Photobiol 32:601–605PubMedCrossRefGoogle Scholar
  136. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757PubMedCrossRefGoogle Scholar
  137. Waltimo T, Mohn D, Paqué F, Brunner TJ, Stark WJ, Imfeld T, Schätzle M, Zehnder M (2009) Fine-tuning of bioactive glass for root canal disinfection. J Dent Res 88:235–238PubMedCrossRefGoogle Scholar
  138. Wang MY, West BJ, Jensen CJ, Nowicki D, Su C, Palu AK et al (2002) Morinda citrifolia (Noni): a literature review and recent advances in Noni research. Acta Pharmacol Sin 23:1127–1141PubMedGoogle Scholar
  139. Wang QQ, Zhang CF, Yin XZ (2007) Evaluation of the bactericidal effect of Er, Cr:YSGG, and Nd:YAG lasers in experimentally infected root canals. J Endod 33:830–832PubMedCrossRefGoogle Scholar
  140. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646CrossRefGoogle Scholar
  141. Yamazaki R, Goya C, Yu DG, Kimura Y, Matsumoto K (2001) Effects of erbium, chromium:YSGG laser irradiation on root canal walls: a scanning electron microscopic and thermographic study. J Endod 27:9–12PubMedCrossRefGoogle Scholar
  142. Yavari HR, Rahimi S, Shahi S, Lotfi M, Barhaghi MH, Fatemi A, Abdolrahimi M (2010) Effect of Er, Cr: YSGG laser irradiation on Enterococcus faecalis in infected root canals. Photomed Laser Surg 28:S91–S96PubMedCrossRefGoogle Scholar
  143. Yoon KY, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 15:572–575CrossRefGoogle Scholar
  144. Zehnder M, Söderling E, Salonen J, Waltimo T (2004) Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro. J Endod 30:220–224PubMedCrossRefGoogle Scholar
  145. Zehnder M, Luder HU, Schätzle M, Kerosuo E, Waltimo T (2006) A comparative study on the disinfection potentials of bioactive glass S53P4 and calcium hydroxide in contra-lateral human premolars ex vivo. Int Endod J 39:952–958PubMedCrossRefGoogle Scholar
  146. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of EndodonticsUniversity of TorontoTorontoCanada

Personalised recommendations