Skip to main content

Ionothermal Synthesis of Molecular Sieves

  • Chapter

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The synthesis of molecular sieves in ionic liquid or deep eutectic solvent is termed ionothermal synthesis. It involves an ionic reaction environment with extremely low volatility, and thus, can avoid the safety risks of hydro/solvothermal reactions, and bring great convenience and flexibility to both the synthesis of molecular sieves and the study on their formation mechanisms. In this chapter, first introduced are the special physicochemical properties of ionic liquids and deep eutectic solvents, and the distinctive opportunities brought by them to synthesize molecular sieves. A detailed methodological illustration of ionothermal synthesis technique is provided subsequently. The molecular sieves ionothermally synthesized are summarized by their features such as composition, structure, porosity and morphology. Then follows a review on the fascinating structure-directing effect of various guest species in ionothermal synthesis. Finally, a prospect is given on the future development of ionothermal synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430:1012–1016

    Article  CAS  Google Scholar 

  2. Taubert A, Li Z (2007) Inorganic materials from ionic liquids. Dalton Trans (7):723–727

    Article  Google Scholar 

  3. Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic–organic hybrids. Acc Chem Res 40:1005–1013

    Article  CAS  Google Scholar 

  4. Morris RE (2009) Ionothermal synthesis – ionic liquids as functional solvents in the preparation of crystalline materials. Chem Commun (21):2990–2998

    Article  CAS  Google Scholar 

  5. Ma Z, Yu J, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285

    Article  CAS  Google Scholar 

  6. Freudenmann D, Wolf S, Wolff M, Feldmann C (2011) Ionic liquids: new perspectives for inorganic synthesis? Angew Chem Int Ed 50:11050–11060

    Article  CAS  Google Scholar 

  7. Wang Y, Xu Y, Tian Z, Lin L (2012) Research progress in ionothermal synthesis of molecular sieves. Chin J Catal 33:39–50

    Article  CAS  Google Scholar 

  8. Wilkes JS, Wasserscheid P, Welton T (2008) Introduction. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis, vol 1, 2nd edn. Wiley, Weinheim, pp 1–6

    Google Scholar 

  9. Zhang Q, De Oliveira VK, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  Google Scholar 

  10. Ruß C, König B (2012) Low melting mixtures in organic synthesis – an alternative to ionic liquids? Green Chem 14:2969–2982

    Article  CAS  Google Scholar 

  11. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun (1):70–71

    Article  CAS  Google Scholar 

  12. D’Agostino C, Harris RC, Abbott AP, Gladden LF, Mantle MD (2011) Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Phys Chem Chem Phys 13:21383–21391

    Article  CAS  Google Scholar 

  13. Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200

    Article  CAS  Google Scholar 

  14. Hanke CG, Lynden-Bell RM (2003) A simulation study of water-dialkylimidazolium ionic liquid mixtures. J Phys Chem B 107:10873–10878

    Article  CAS  Google Scholar 

  15. Danten Y, Cabaço MI, Besnard M (2009) Interaction of water highly diluted in 1-alkyl-3-methyl imidazolium ionic liquids with the PF6 and BF4 anions. J Phys Chem A 113:2873–2889

    Article  CAS  Google Scholar 

  16. Drylie EA, Wragg DS, Parnham ER, Wheatley PS, Slawin AMZ, Warren JE, Morris RE (2007) Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. Angew Chem Int Ed 46:7839–7843

    Article  CAS  Google Scholar 

  17. Liu H, Tian Z-J, Gies H, Wei Y, Marler B, Wang L, Wang Y-S, Li D-W (2014) Mn2+ cation-directed ionothermal synthesis of an open-framework fluorinated aluminium phosphite-phosphate. RSC Adv 4:29310–29313

    Article  CAS  Google Scholar 

  18. Weber CC, Masters AF, Maschmeyer T (2012) Controlling hydrolysis reaction rates with binary ionic liquid mixtures by tuning hydrogen-bonding interactions. J Phys Chem B 116:1858–1864

    Article  CAS  Google Scholar 

  19. Cai R, Liu Y, Gu S, Yan Y (2010) Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating. J Am Chem Soc 132:12776–12777

    Article  CAS  Google Scholar 

  20. Ma H, Tian Z, Xu R, Wang B, Wei Y, Wang L, Xu Y, Zhang W, Lin L (2008) Effect of water on the ionothermal synthesis of molecular sieves. J Am Chem Soc 130:8120–8121

    Article  CAS  Google Scholar 

  21. Wang L, Xu Y, Wei Y, Duan J, Chen A, Wang B, Ma H, Tian Z, Lin L (2006) Structure-directing role of amines in the ionothermal synthesis. J Am Chem Soc 128:7432–7433

    Article  CAS  Google Scholar 

  22. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357–358:97–102

    Article  Google Scholar 

  23. Vila J, Fernández-Castro B, Rilo E, Carrete J, Domínguez-Pérez M, Rodríguez JR, García M, Varela LM, Cabeza O (2012) Liquid-solid-liquid phase transition hysteresis loops in the ionic conductivity of ten imidazolium-based ionic liquids. Fluid Phase Equilib 320:1–10

    Article  CAS  Google Scholar 

  24. Wakai C, Oleinikova A, Ott M, Weingärtner H (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 109:17028–17030

    Article  CAS  Google Scholar 

  25. Park S, Kazlauskas RJ (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66:8395–8401

    Article  CAS  Google Scholar 

  26. Zaitsau DH, Fumino K, Emel’yanenko VN, Yermalayeu AV, Ludwig R, Verevkin SP (2012) Structure-property relationships in ionic liquids: a study of the anion dependence in vaporization enthalpies of imidazolium-based ionic liquids. ChemPhysChem 13:1868–1876

    Article  CAS  Google Scholar 

  27. Hu H-C, Soriano AN, Leron RB, Li M-H (2011) Molar heat capacity of four aqueous ionic liquid mixtures. Thermochim Acta 519:44–49

    Article  CAS  Google Scholar 

  28. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964

    Article  CAS  Google Scholar 

  29. Verevkin SP, Emel’yanenko VN, Zaitsau DH, Ralys RV, Schick C (2012) Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies. J Phys Chem B 116:4276–4285

    Article  CAS  Google Scholar 

  30. Yu Y-H, Soriano AN, Li M-H (2009) Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids. Thermochim Acta 482:42–48

    Article  CAS  Google Scholar 

  31. Abbott AP, Capper G, McKenzie KJ, Ryder KS (2007) Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 599:288–294

    Article  CAS  Google Scholar 

  32. Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun (10):1235–1237

    Article  CAS  Google Scholar 

  33. Shahbaz K, Mjalli FS, Hashim MA, Al Nashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. J Appl Sci 10:3349–3354

    Article  CAS  Google Scholar 

  34. Abbott AP, Harris RC, Ryder KS (2007) Application of hole theory to define ionic liquids by their transport properties. J Phys Chem B 111:4910–4913

    Article  CAS  Google Scholar 

  35. Speight JG (ed) (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  36. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  37. Hoffmann J, Nüchter M, Ondruschka B, Wasserscheid P (2003) Ionic liquids and their heating behaviour during microwave irradiation – a state of the art report and challenge to assessment. Green Chem 5:296–299

    Article  CAS  Google Scholar 

  38. Xu Y-P, Tian Z-J, Wang S-J, Hu Y, Wang L, Wang B-C, Ma Y-C, Hou L, Yu J-Y, Lin L-W (2006) Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves. Angew Chem Int Ed 45:3965–3970

    Article  CAS  Google Scholar 

  39. Chambreau SD, Boatz JA, Vaghjiani GL, Koh C, Kostko O, Golan A, Leone SR (2011) Thermal decomposition mechanism of 1-ethyl-3-methylimidazolium bromide ionic liquid. J Phys Chem A 116:5867–5876

    Article  CAS  Google Scholar 

  40. Kroon MC, Buijs W, Peters CJ, Witkamp G-J (2007) Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta 465:40–47

    Article  CAS  Google Scholar 

  41. Parnham ER, Morris RE (2006) 1-Alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves. Chem Mater 18:4882–4887

    Article  CAS  Google Scholar 

  42. Griffin JM, Clark L, Seymour VR, Aldous DW, Dawson DM, Iuga D, Morris RE, Ashbrook SE (2012) Ionothermal 17O enrichment of oxides using microlitre quantities of labelled water. Chem Sci 3:2293–2300

    Article  CAS  Google Scholar 

  43. Sowmiah S, Srinivasadesikan V, Tseng M-C, Chu Y-H (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780–3813

    Article  CAS  Google Scholar 

  44. Wragg DS, Slawin AMZ, Morris RE (2009) The role of added water in the ionothermal synthesis of microporous aluminium phosphates. Solid State Sci 11:411–416

    Article  CAS  Google Scholar 

  45. Zhao X, Chen J, Sun Z, Li A, Li G, Wang X (2013) Formation mechanism and catalytic application of hierarchical structured FeAlPO-5 molecular sieve by microwave-assisted ionothermal synthesis. Microporous Mesoporous Mater 182:8–15

    Article  CAS  Google Scholar 

  46. Yang M, Xu F, Liu Q, Yan P, Liu X, Wang C, Welz-Biermann U (2010) Chelated orthoborate ionic liquid as a reactant for the synthesis of a new cobalt borophosphate containing extra-large 16-ring channels. Dalton Trans 39:10571–10573

    Article  CAS  Google Scholar 

  47. Yang M, Yan P, Xu F, Ma J, Welz-Biermann U (2012) Role of boron-containing ionic liquid in the synthesis of manganese borophosphate with extra-large 16-ring pore openings. Microporous Mesoporous Mater 147:73–78

    Article  CAS  Google Scholar 

  48. Xu R, Zhang W, Guan J, Xu Y, Wang L, Ma H, Tian Z, Han X, Lin L, Bao X (2009) New insights into the role of amines in the synthesis of molecular sieves in ionic liquids. Chem Eur J 15:5348–5354

    Article  CAS  Google Scholar 

  49. Han L, Wang Y, Li C, Zhang S, Lu X, Cao M (2008) Simple and safe synthesis of microporous aluminophosphate molecular sieves by inothermal approach. AIChE J 54:280–288

    Article  CAS  Google Scholar 

  50. Hou L (2007) Study on synthesis of aluminophosphate and hetero-atom substituted aluminophosphate molecular sieves in ionic liquid. Master’s thesis, Dalian Institute of Light Industry, Dalian

    Google Scholar 

  51. Wei Y (2010) Studies on the ionothermal synthesis of phosphate molecular sieves. Doctoral dissertation, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian

    Google Scholar 

  52. Pei R (2010) The structure directing effect in the ionothermal synthesis of aluminophosphate molecular sieves. Doctoral dissertation, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian

    Google Scholar 

  53. Wang S-J, Hou L, Xu Y-P, Tian Z-J, Yu J-Y, Lin L-W (2008) Effect of Al-containing precursors on ionothermal synthesis of aluminophosphate molecular sieve. Chin J Process Eng 8:93–96

    CAS  Google Scholar 

  54. Wheatley PS, Allan PK, Teat SJ, Ashbrook SE, Morris RE (2010) Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites. Chem Sci 1:483–487

    Article  CAS  Google Scholar 

  55. Yonemoto BT, Lin Z, Jiao F (2012) A general synthetic method for MPO4 (M = Co, Fe, Mn) frameworks using deep-eutectic solvents. Chem Commun 48:9132–9134

    Article  CAS  Google Scholar 

  56. Parnham ER, Morris RE (2006) The ionothermal synthesis of cobalt aluminophosphate zeolite frameworks. J Am Chem Soc 128:2204–2205

    Article  CAS  Google Scholar 

  57. Pei R, Wei Y, Li K, Wen G, Xu R, Xu Y, Wang L, Ma H, Wang B, Tian Z, Zhang W, Lin L (2010) Mixed template effect adjusted by amine concentration in ionothermal synthesis of molecular sieves. Dalton Trans 39:1441–1443

    Article  CAS  Google Scholar 

  58. Pei R, Tian Z, Wei Y, Li K, Xu Y, Wang L, Ma H (2010) Ionothermal synthesis of AlPO4 molecular sieves in the presence of quaternary ammonium cation. Mater Lett 64:2118–2121

    Article  CAS  Google Scholar 

  59. Zhao Z, Zhang W, Xu R, Han X, Tian Z, Bao X (2012) Ionothermal synthesis process for aluminophosphate molecular sieves in the mixed water/ionic liquid system. Dalton Trans 41:990–994

    Article  CAS  Google Scholar 

  60. Stark A (2014) Shaping micro- and macroscopic properties of ionic liquid-solute systems: multi-functional task-specific agents. J Mol Liq 192:144–152

    Article  CAS  Google Scholar 

  61. Xu R, Shi X, Zhang W, Xu Y, Tian Z, Lu X, Han X, Bao X (2010) Cooperative structure-directing effect in the synthesis of aluminophosphate molecular sieves in ionic liquids. Phys Chem Chem Phys 12:2443–2449

    Article  CAS  Google Scholar 

  62. Wang L, Xu Y-P, Wang B-C, Wang S-J, Yu J-Y, Tian Z-J, Lin L-W (2008) Ionothermal synthesis of magnesium-containing aluminophosphate molecular sieves and their catalytic performance. Chem Eur J 14:10551–10555

    Article  CAS  Google Scholar 

  63. Xu Y, Tian Z, Xu Z, Wang B, Li P, Wang S, Hu Y, Ma Y, Li K, Liu Y, Yu J, Lin L (2005) Ionothermal synthesis of silicoaluminophosphate molecular sieve in N-alkyl imidazolium bromide. Chin J Catal 26:446–448

    CAS  Google Scholar 

  64. Hu Y, Liu Y-J, Yu J-Y, Xu Y-P, Tian Z-J, Lin L-W (2006) Ionothermal synthesis of aluminophosphate molecular sieve. Chin J Inorg Chem 22:753–756

    CAS  Google Scholar 

  65. Wragg DS, Byrne PJ, Giriat G, Le Ouay B, Gyepes R, Harrison A, Whittaker AG, Morris RE (2009) In situ comparison of ionothermal kinetics under microwave and conventional heating. J Phys Chem C 113:20553–20558

    Article  CAS  Google Scholar 

  66. Xu R, Zhang W, Xu J, Tian Z, Deng F, Han X, Bao X (2013) Multinuclear solid-state NMR studies on the formation mechanism of aluminophosphate molecular sieves in ionic liquids. J Phys Chem C 117:5848–5854

    Article  CAS  Google Scholar 

  67. Shi Y, Liu G, Wang L, Zhang X (2014) Ionothermal synthesis of phase pure AlPO4-5 using a series of tri-substituted imidazolium bromides. Microporous Mesoporous Mater 193:1–6

    Article  CAS  Google Scholar 

  68. Li D, Xu Y, Wang Y, Liu H, Wang B, Ma H, Xu R, Tian Z (2014) Ionothermal syntheses and characterizations of cobalt-substituted extra-large pore aluminophosphate molecular sieves with –CLO topology. Microporous Mesoporous Mater 198:153–160

    Article  CAS  Google Scholar 

  69. Carvalho MM, Ruotolo LAM, Fernandez-Felisbino R (2013) Synthesis of aluminophosphate by the ionothermal method using factorial design. Microporous Mesoporous Mater 165:163–167

    Article  CAS  Google Scholar 

  70. Fayad EJ, Bats N, Kirschhock CEA, Rebours B, Quoineaud A-A, Martens JA (2010) A rational approach to the ionothermal synthesis of an AlPO4 molecular sieve with an LTA-type framework. Angew Chem Int Ed 49:4585–4588

    Article  CAS  Google Scholar 

  71. Khoo DY, Kok W-M, Mukti RR, Mintova S, Ng E-P (2013) Ionothermal approach for synthesizing AlPO-5 with hexagonal thin-plate morphology influenced by various parameters at ambient pressure. Solid State Sci 25:63–69

    Article  CAS  Google Scholar 

  72. Ng E-P, Sekhon SS, Mintova S (2009) Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach. Chem Commun (13):1661–1663

    Article  CAS  Google Scholar 

  73. Ng E-P, Itani L, Sekhon SS, Mintova S (2010) Micro- to macroscopic observations of MnAlPO-5 nanocrystal growth in ionic-liquid media. Chem Eur J 16:12890–12897

    Article  CAS  Google Scholar 

  74. Zhao X, Wang H, Kang C, Sun Z, Li G, Wang X (2012) Ionothermal synthesis of mesoporous SAPO-5 molecular sieves by microwave heating and using eutectic solvent as structure-directing agent. Microporous Mesoporous Mater 151:501–505

    Article  CAS  Google Scholar 

  75. Zhao X, Kang C, Wang H, Luo C, Li G, Wang X (2011) Ionothermal synthesis of FeAlPO-16 molecular sieve by microwave irradiation in eutectic mixture. J Porous Mater 18:615–621

    Article  CAS  Google Scholar 

  76. Liu L, Li X, Xu H, Li J, Lin Z, Dong J (2009) Template control in ionothermal synthesis of aluminophosphate microporous materials. Dalton Trans (47):10418–10421

    Article  CAS  Google Scholar 

  77. Zhao X, Wang H, Dong B, Sun Z, Li G, Wang X (2012) Facile synthesis of FeAlPO-5 molecular sieve in eutectic mixture via a microwave-assisted process. Microporous Mesoporous Mater 151:56–63

    Article  CAS  Google Scholar 

  78. Zhao X, Sun Z, Zhu Z, Li A, Li G, Wang X (2013) Evaluation of iron-containing aluminophosphate molecular sieve catalysts prepared by different methods for phenol hydroxylation. Catal Lett 143:657–665

    Article  CAS  Google Scholar 

  79. Pei R, Tian Z, Wei Y, Li K, Xu Y, Wang L, Ma H (2010) Ionothermal synthesis of AlPO4-34 molecular sieves using heterocyclic aromatic amine as the structure directing agent. Mater Lett 64:2384–2387

    Article  CAS  Google Scholar 

  80. Wragg DS, Le Ouay B, Beale AM, O’Brien MG, Slawin AMZ, Warren JE, Prior TJ, Morris RE (2010) Ionothermal synthesis and crystal structures of metal phosphate chains. J Solid State Chem 183:1625–1631

    Article  CAS  Google Scholar 

  81. Wei Y, Tian Z, Gies H, Xu R, Ma H, Pei R, Zhang W, Xu Y, Wang L, Li K, Wang B, Wen G, Lin L (2010) Ionothermal synthesis of an aluminophosphate molecular sieve with 20-ring pore openings. Angew Chem Int Ed 49:5367–5370

    Article  CAS  Google Scholar 

  82. Ma H, Xu R, You W, Wen G, Wang S, Xu Y, Wang B, Wang L, Wei Y, Xu Y, Zhang W, Tian Z, Lin L (2009) Ionothermal synthesis of gallophosphate molecular sieves in 1-alkyl-3-methyl imidazolium bromide ionic liquids. Microporous Mesoporous Mater 120:278–284

    Article  CAS  Google Scholar 

  83. Liu L, Kong Y, Xu H, Li JP, Dong JX, Lin Z (2008) Ionothermal synthesis of a three-dimensional zinc phosphate with DFT topology using unstable deep-eutectic solvent as template-delivery agent. Microporous Mesoporous Mater 115:624–628

    Article  CAS  Google Scholar 

  84. Liu L, Wragg DS, Zhang H, Kong Y, Byrne PJ, Prior TJ, Warren JE, Lin Z, Dong J, Morris RE (2009) Ionothermal synthesis, structure and characterization of three-dimensional zinc phosphates. Dalton Trans (34):6715–6718

    Article  CAS  Google Scholar 

  85. Bieniok A, Brendel U, Sereni P, Musso M (2013) Raman spectroscopy and crystal structure investigation of solvo- and ionothermally prepared microporous metal-aluminophosphates with the laumontite framework structure. Z Krist 228:374–381

    CAS  Google Scholar 

  86. Pei R, Xu Y, Wei Y, Wen G, Li K, Wang L, Ma H, Tian Z, Lin L (2010) The cooperative templating effect of organic amine in the ionothermal synthesis of LTA type aluminophosphate molecular sieves. Chin J Catal 31:1083–1089

    CAS  Google Scholar 

  87. Han L, Wang Y, Zhang S, Lu XM (2008) Ionothermal synthesis of microporous aluminum and gallium phosphates. J Cryst Growth 311:167–171

    Article  CAS  Google Scholar 

  88. Parnham ER, Drylie EA, Wheatley PS, Slawin AMZ, Morris RE (2006) Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew Chem Int Ed 45:4962–4966

    Article  CAS  Google Scholar 

  89. Baerlocher C, McCusker LB (2007) Database of zeolite structures. http://www.iza-structure.org/databases/

  90. Lohmeier SJ (2011) Synthese und Charakterisierung von in ionischen Flüssigkeiten hergestellten Aluminiumphosphaten. Doctoral dissertation, Gottfried Wilhelm Leibniz Universität Hannover, Hannover

    Google Scholar 

  91. Ma Y-C, Xu Y-P, Wang S-J, Wang B-C, Tian Z-J, Yu J-Y, Lin L-W (2006) Synthesis of sodalite in room-temperature ionic liquid. Chem J Chin Univ 27:739–741

    CAS  Google Scholar 

  92. Yuen AKL, Masters AF, Maschmeyer T (2013) 1,3-Disubstituted imidazolium hydroxides: dry salts or wet carbenes? Catal Today 200:9–16

    Article  CAS  Google Scholar 

  93. Liu L, Yang J, Li J, Dong J, Šišak D, Luzzatto M, McCusker LB (2011) Ionothermal synthesis and structure analysis of an open-framework zirconium phosphate with a high CO2/CH4 adsorption ratio. Angew Chem Int Ed 50:8139–8142

    Article  CAS  Google Scholar 

  94. Zhang J, Wu T, Chen S, Feng P, Bu X (2009) Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angew Chem Int Ed 48:3486–3490

    Article  CAS  Google Scholar 

  95. Fu H, Qin C, Lu Y, Zhang Z-M, Li Y-G, Su Z-M, Li W-L, Wang E-B (2012) An ionothermal synthetic approach to porous polyoxometalate-based metal-organic frameworks. Angew Chem Int Ed 51:7985–7989

    Article  CAS  Google Scholar 

  96. Liu J, Zhang F, Zou X, Yu G, Zhao N, Fan S, Zhu G (2013) Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials. Chem Commun 49:7430–7432

    Article  CAS  Google Scholar 

  97. Lian J, Ma J, Duan X, Kim T, Li H, Zheng W (2010) One-step ionothermal synthesis of γ-Al2O3 mesoporous nanoflakes at low temperature. Chem Commun 46:2650–2652

    Article  CAS  Google Scholar 

  98. Wang Y, Xu Y, Ma H, Xu R, Liu H, Li D, Tian Z (2014) Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous Mesoporous Mater 195:50–59

    Article  CAS  Google Scholar 

  99. Cai R, Sun M, Chen Z, Munoz R, O’Neill C, Beving DE, Yan Y (2008) Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. Angew Chem Int Ed 47:525–528

    Article  CAS  Google Scholar 

  100. Li K, Tian Z, Li X, Xu R, Xu Y, Wang L, Ma H, Wang B, Lin L (2012) Ionothermal synthesis of aluminophosphate molecular sieve membranes through substrate surface conversion. Angew Chem Int Ed 51:4397–4400

    Article  CAS  Google Scholar 

  101. Li K, Li X, Wang Y, Li D, Liu H, Xu R, Tian Z (2013) Ionothermal synthesis of AEL-type aluminophosphate molecular sieve membrane and its formation mechanism. Acta Chim Sin 71:573–578

    Article  CAS  Google Scholar 

  102. Morris RE, Weigel SJ (1997) The synthesis of molecular sieves from non-aqueous solvents. Chem Soc Rev 26:309–317

    Article  CAS  Google Scholar 

  103. Parnham ER, Morris RE (2006) Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure. J Mater Chem 16:3682–3684

    Article  CAS  Google Scholar 

  104. Morris RE, Bu X (2010) Induction of chiral porous solids containing only achiral building blocks. Nat Chem 2:353–361

    Article  CAS  Google Scholar 

  105. Xing H, Li J, Yan W, Chen P, Jin Z, Yu J, Dai S, Xu R (2008) Cotemplating ionothermal synthesis of a new open-framework aluminophosphate with unique Al/P ratio of 6/7. Chem Mater 20:4179–4181

    Article  CAS  Google Scholar 

  106. Martineau C, Bouchevreau B, Tian Z, Lohmeier S-J, Behrens P, Taulelle F (2011) Beyond the limits of X-ray powder diffraction: description of the nonperiodic subnetworks in aluminophosphate-cloverite by NMR crystallography. Chem Mater 23:4799–4809

    Article  CAS  Google Scholar 

  107. Wei Y, Marler B, Zhang L, Tian Z, Graetsch H, Gies H (2012) Co-templating ionothermal synthesis and structure characterization of two new 2D layered aluminophosphates. Dalton Trans 41:12408–12415

    Article  CAS  Google Scholar 

  108. Jurčík V, Wilhelm R (2005) An imidazolinium salt as ionic liquid for medium and strong bases. Green Chem 7:844–848

    Article  CAS  Google Scholar 

  109. Kuperman A, Nadimi S, Oliver S, Ozin GA, Garcés JM, Olken MM (1993) Non-aqueous synthesis of giant crystals of zeolites and molecular sieves. Nature 365:239–242

    Article  CAS  Google Scholar 

  110. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F-S (2012) Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc 134:15173–15176

    Article  CAS  Google Scholar 

  111. Jin Y, Sun Q, Qi G, Yang C, Xu J, Chen F, Meng X, Deng F, Xiao F-S (2013) Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed 52:9172–9175

    Article  CAS  Google Scholar 

  112. Tian Y, McPherson MJ, Wheatley PS, Morris RE (2014) Ionic liquid assisted synthesis of zeolite-TON. Z Anorg Allg Chem 640:1177–1181

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge National Natural Science Foundation of China for its funding support (Grant No. 21373214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Jian Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tian, ZJ., Liu, H. (2016). Ionothermal Synthesis of Molecular Sieves. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_2

Download citation

Publish with us

Policies and ethics