Skip to main content

Sustainable Routes for Zeolite Synthesis

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The modern synthesis of zeolites mainly involves the use of organic templates, the addition of solvent, the preparation of starting gels, and the heating of the gels. Each step could be made greener in the future. This chapter presents a brief overview on the recently reported green routes for synthesizing zeolites, mainly focusing on the reduction or elimination of organic templates as well as the complete elimination of solvent. To overcome the disadvantages of using organic templates, nontoxic templates and template recycling steps have been employed in the zeolite syntheses. In addition, organotemplate-free synthesis has become a popular and universal methodology for synthesizing zeolites. Particularly, seed-directed synthesis in the absence of organic templates is a general route for synthesizing a series of zeolites. From an economic and environmental standpoint, solvent-free synthesis is a great move toward “green” synthesis of zeolite due to the following: high yields, high efficiency, low waste, low pollution, low pressure, hierarchical porosity, and simple and convenient procedure. Combining the advantages of solvent-free and organotemplate-free synthesis would particularly open the pathway to a highly sustainable zeolite synthesis protocol in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–701

    Article  CAS  Google Scholar 

  2. Xu R, Pang W et al (eds) (2007) Chemistry of zeolites and related porous materials. Wiley, Singapore

    Google Scholar 

  3. Barrer RM (1948) Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc 2:127–132

    Article  CAS  Google Scholar 

  4. Barrer RM, Hinds L et al (1953) The hydrothermal chemistry of silicates. Part III. Reactions of analcite and leucite. J Chem Soc 1466–1475

    Google Scholar 

  5. Milton RM (1959) Molecular sieve adsorbents. US Patent 2,882,243, 14 Apr 1959

    Google Scholar 

  6. Milton RM (1959) Molecular sieve adsorbents. US Patent 2,882,244, 14 Apr 1959

    Google Scholar 

  7. Barrer RM, Denny PJ (1961) Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. J Chem Soc 971–982

    Google Scholar 

  8. Kerr GT, Kokotail GT (1961) Sodium zeolite ZK-4, a new synthetic crystalline aluminosilicate. J Am Chem Soc 83:4675

    Article  CAS  Google Scholar 

  9. Meng X, Xiao FS (2014) Green routes for synthesis of zeolites. Chem Rev 114:1521–1543

    Article  CAS  Google Scholar 

  10. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  11. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2419

    Article  CAS  Google Scholar 

  12. Vaughan DEW, Barrett MG (1982) High silica faujasite polymorph – CSZ-3 and method of synthesizing. US Patent 4,333,859, 8 Jun 1982

    Google Scholar 

  13. Vaughan DEW (1989) Composition and process for preparing ECR-30. US Patent 4,879,103, 7 Nov 1989

    Google Scholar 

  14. Liu S, Li L et al (2008) Synthesis of EMT-rich faujasite in the presence of organic template of low-cost polyquaternium-6. J Porous Mater 15:295–301

    Article  CAS  Google Scholar 

  15. Wang J, Song J et al (2009) Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure. Microporous Mesoporous Mater 117:561–569

    Article  CAS  Google Scholar 

  16. Gobbi A, Frenking G (1993) Y-conjugated compounds-the equilibrium geometries and electronic-structures of guanidine, guanidinium cation, urea, and 1,1-diaminoethylene. J Am Chem Soc 115:2362–2372

    Article  CAS  Google Scholar 

  17. Zones SI, Hwang S-J (2002) Synthesis of high silica zeolites using a mixed quaternary ammonium cation, amine approach: discovery of zeolite SSZ-47. Chem Mater 14:313–320

    Article  CAS  Google Scholar 

  18. Zones SI (2008) Preparation of molecular sieves using a structure directing agent and an N, N, N-triakyl benzyl quaternary ammonium cation. US Patent 20,080,075,656, 27 Mar 2008

    Google Scholar 

  19. Moscoso JG, Lewis GJ et al (2004) Crystalline aluminosilicate zeolitic composition: UZM-9. US Patent 6,713,041, 30 Mar 2004

    Google Scholar 

  20. Lewis GJ, Miller MA et al (2004) Experimental charge density matching approach to zeolite synthesis. Stud Surf Sci Catal 154:364–372

    Article  Google Scholar 

  21. Miller MA, Moscoso JG et al (2007) Synthesis and characterization of the 12-ring zeolites UZM-4 (BPH) and UZM-22 (MEI) via the charge density mismatch approach in the Choline-Li2O-SrO-Al2O3-SiO2 system. Stud Surf Sci Catal 170:347–354

    Google Scholar 

  22. Ren L, Zhu L et al (2011) Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOX by NH3. Chem Commun 47:9789–9791

    Article  CAS  Google Scholar 

  23. Ren L, Zhang Y et al (2012) Design and synthesis of a catalytically active Cu-SSZ-13 zeolite from a copper-amine complex template. Chin J Catal 33:92–105

    Article  CAS  Google Scholar 

  24. Takewaki T, Beck LW et al (1999) Zincosilicate CIT-6: a precursor to a family of *BEA-type molecular sieves. J Phys Chem B 103:2674–2679

    Article  CAS  Google Scholar 

  25. Takewaki T, Beck LW et al (1999) Synthesis of CIT-6, a zincosilicate with the (*)BEA topology. Top Catal 9:35–42

    Article  CAS  Google Scholar 

  26. Takewaki T, Hwang SJ et al (1999) Synthesis of *BEA-type molecular sieves using mesoporous materials as reagents. Microporous Mesoporous Mater 32:265–278

    Article  CAS  Google Scholar 

  27. Jones CW, Hwang SJ et al (2001) Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem Mater 13:1041–1050

    Article  CAS  Google Scholar 

  28. Jones CW, Tsuji K et al (2001) Tailoring molecular sieve properties during SDA removal via solvent extraction. Microporous Mesoporous Mater 48:57–64

    Article  CAS  Google Scholar 

  29. Lee H, Zones SI et al (2003) A combustion-free methodology for synthesizing zeolites and zeolite-like materials. Nature 425:385–388

    Article  CAS  Google Scholar 

  30. Meng X, Xie B et al (2009) Organotemplate-free routes for synthesizing zeolites. Chin J Catal 30:965–971

    CAS  Google Scholar 

  31. Argauer RJ, Landolt GR (1972) Crystalline zeolite ZSM-5 and method of preparing the same. US Patent 3,702,886, 14 Nov 1972

    Google Scholar 

  32. Grose, RW, Flanigen EM (1977) Novel zeolite compositions and processes for preparing and using same. Belgian Patent 851,066

    Google Scholar 

  33. Grose, RW, Flanigen EM (1980) Novel zeolite compositions and processes for preparing and using same. British Patent 574,840

    Google Scholar 

  34. Grose, RW, Flanigen EM (1981) Novel zeolite compositions and processes for preparing and using same. US Patent 4,257,885, 24 Mar 1981

    Google Scholar 

  35. Shiralkar VP, Clearfield A (1989) Synthesis of the molecular-sieve zsm-5 without the aid of templates. Zeolites 9:363–370

    Article  CAS  Google Scholar 

  36. Wadlinger RL, Kerr GT et al (1967) Catalytic composition of a crystalline zeolite. US Patent 3,308,069, 7 Mar 1967

    Google Scholar 

  37. Xie B, Song J et al (2008) An organotemplate-free and fast route for synthesizing Beta zeolite. Chem Mater 20:4533–4535

    Article  CAS  Google Scholar 

  38. Kamimura Y, Chaikittisilp W et al (2010) Critical factors in the seed-assisted synthesis of zeolite Beta and “green Beta” from OSDA-free Na+-aluminosilicate gels. Chem Asian J 5:2182–2191

    Article  CAS  Google Scholar 

  39. Zhang H, Xie B et al (2013) Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous Mesoporous Mater 180:123–129

    Article  CAS  Google Scholar 

  40. Xie X, Zhang H et al (2011) Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chem Commun 47:3945–3947

    Article  CAS  Google Scholar 

  41. Kamimura Y, Tanahashi S et al (2011) Crystallization behavior of zeolite Beta in OSDA-free, seed-assisted synthesis. J Phys Chem C 115:744–750

    Article  CAS  Google Scholar 

  42. De Baerdemaeker T, Yilmaz B et al (2013) Catalytic applications of OSDA-free Beta zeolite. J Catal 308:73–81

    Article  Google Scholar 

  43. Yilmaz B, Müller U et al (2013) A new catalyst platform: zeolite Beta from template-free synthesis. Catal Sci Technol 3:2580–2586

    Article  CAS  Google Scholar 

  44. Zhang H, Chu L et al (2013) One-pot synthesis of Fe-Beta zeolite by an organotemplate-free and seed-directed route. J Mater Chem A 1:3254–3257

    Article  CAS  Google Scholar 

  45. Dougnier F, Patarin J et al (1992) Synthesis, characterization, and catalytic properties of silica-rich Faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. Zeolites 12:160–166

    Article  CAS  Google Scholar 

  46. Ng E-P, Chateigner D et al (2012) Capturing ultrasmall EMT zeolite from template-free systems. Science 335:70–73

    Article  CAS  Google Scholar 

  47. Rosinski EJ, Rubin MK (1974) Crystalline zeolite ZSM-12. US Patent 3,832,449, 27 Aug 1974

    Google Scholar 

  48. Trewella JC, Schlenker JL et al (1985) The Si-29 MAS-NMR spectrum of ZSM-12. Zeolites 5:130–131

    Article  CAS  Google Scholar 

  49. Chiche BH, Dutartre R et al (1995) Study of the sorption and acidic properties of MTW-type zeolite. Catal Lett 31:359–366

    Article  CAS  Google Scholar 

  50. Ritsch S, Ohnishi N et al (1998) High-resolution electron microscopy study of ZSM-12 (MTW). Chem Mater 10:3958–3965

    Article  CAS  Google Scholar 

  51. Mitra A, Kirby CW et al (2002) Synthesis of pure-silica MTW powder and supported films. Microporous Mesoporous Mater 54:175–186

    Article  CAS  Google Scholar 

  52. Iyoki K, Kamimura Y et al (2010) Synthesis of MTW-type zeolites in the absence of organic structure-directing agent. Chem Lett 39:730–731

    Article  CAS  Google Scholar 

  53. Kamimura Y, Itabashi K et al (2012) Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems. Microporous Mesoporous Mater 147:149–156

    Article  Google Scholar 

  54. Kamimura Y, Itabashi K et al (2012) OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous Mesoporous Mater 163:282–290

    Article  CAS  Google Scholar 

  55. Ernst S, Weitkamp J et al (1989) Synthesis and shape-selective properties of ZSM-22. Appl Catal 48:137–148

    Article  CAS  Google Scholar 

  56. Marler B (1987) Silica-ZSM-22: synthesis and single-crystal structure refinement. Zeolites 7:393–397

    Article  CAS  Google Scholar 

  57. Gunawardane RP, Gies H et al (1988) Long-chain polyamines and amine boric-acid pairs as templates for the synthesis of porous tectosilicates. Zeolites 8:127–131

    Article  CAS  Google Scholar 

  58. Zones SI (1989) Synthesis of pentasil zeolites from sodium-silicate solutions in the presence of quaternary imidazole compounds. Zeolites 9:458–467

    Article  CAS  Google Scholar 

  59. Rollmann LD, Schlenker JL et al (1999) On the role of small amines in zeolite synthesis. J Phys Chem B 103:7175–7183

    Article  CAS  Google Scholar 

  60. Masih D, Kobayashi T et al (2007) Hydrothermal synthesis of pure ZSM-22 under mild conditions. Chem Commun 31:3303–3305

    Article  Google Scholar 

  61. Wang Y, Wang X et al (2014) Seed-directed and organotemplate-free synthesis of TON zeolite. Catal Today 226:103–108

    Article  CAS  Google Scholar 

  62. Plank CJ, Rosinski EJ et al (1978) Crystalline zeolite ZSM-23 and synthesis thereof. US Patent 4,076,842, 28 Feb 1978

    Google Scholar 

  63. Valyocsik EW (1984) Synthesis of ZSM-23 zeolite. US Patent 4,490,342, 25 Dec 1984

    Google Scholar 

  64. Parker LM, Bibby DM et al (1983) Synthesis and some properties of 2 novel zeolites, KZ-1 and KZ-2. Zeolites 3:8–11

    Article  CAS  Google Scholar 

  65. Araya A, Lowe BM (1987) Synthesis of zeolite EU-13 from a reaction mixture containing tetramethylammonium compound. US Patent 4,705,674, 10 Nov 1987

    Google Scholar 

  66. Zones SI (1991) Zeolite SSZ-32. US Patent 5,053,373, 1 Oct 1991

    Google Scholar 

  67. Nakagawa Y (1998) Process for preparing zeolites having MTT crystal structure using small, neutral amines. US Patent 5,707,601, 13 Jan 1998

    Google Scholar 

  68. Moini A, Schmitt KD et al (1994) The role of diquaternary cations as directing agents in zeolite synthesis. Zeolites 14:504–511

    Article  CAS  Google Scholar 

  69. Rane SJ, Chakrabarty DK (1991) Shape selective catalysis by zeolite KZ-1 synthesis, characterization and isomerization of meta-xylene. Appl Catal 75:281–288

    Article  CAS  Google Scholar 

  70. Wu Q, Wang X et al (2014) Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous Mesoporous Mater 186:106–112

    Article  CAS  Google Scholar 

  71. Müller K, Bein T (2011) Crystallization and porosity of ZSM-23. Microporous Mesoporous Mater 143:253–262

    Article  Google Scholar 

  72. Vortmann S, Marler B et al (1995) Synthesis and crystal-structure of the new borosilicate zeolite RUB-13. Microporous Mater 4:111–121

    Article  CAS  Google Scholar 

  73. Lee GS, Zones SI (2002) Polymethylated [4.1.1] octanes leading to zeolite SSZ-50. J Solid State Chem 167:289–298

    Article  CAS  Google Scholar 

  74. Yokoi T, Yoshioka M et al (2009) Diversification of RTH-type zeolite and its catalytic application. Angew Chem Int Ed 48:9884–9887

    Article  CAS  Google Scholar 

  75. Gies H, Gunawardane RP (1987) One-step synthesis, properties and crystal-structure of aluminum-free Ferrierite. Zeolites 7:442–445

    Article  CAS  Google Scholar 

  76. Morris RE, Weigel SJ et al (1994) A synchrotron X-ray-diffraction, neutron-diffraction, Si-29 MAS-NMR, and computational study of the siliceous form of zeolite Ferrierite. J Am Chem Soc 116:11849–11855

    Article  CAS  Google Scholar 

  77. Asensi MA, Martínez A (1999) Selective isomerization of n-butenes to isobutene on high Si Al ratio ferrierite in the absence of coke deposits: implications on the reaction mechanism. Appl Catal A 183:155–165

    Article  CAS  Google Scholar 

  78. Lee S, Shin C et al (2004) Investigations into the origin of the remarkable catalytic performance of aged H-ferrierite for the skeletal isomerization of 1-butene to isobutene. J Catal 223:200–211

    Article  CAS  Google Scholar 

  79. Rakoczy RA, Breuninger M et al (2002) Template-free synthesis of zeolite ferrierite and characterization of its acid sites. Chem Eng Technol 25:273–275

    Article  CAS  Google Scholar 

  80. Zhang H, Guo Q et al (2011) Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. J Mater Chem 21:9494–9497

    Article  CAS  Google Scholar 

  81. Baerlocher Ch, McCusker LB et al (2007) Atlas of zeolite framework types, sixth rev. edn. Elsevier, Amsterdam

    Google Scholar 

  82. Gottardi G, Galli E (1825) Natural zeolites. Springer, Berlin

    Google Scholar 

  83. Kerr GT (1969) Synthetic zeolite and method for preparing the same. US Patent 3,459,676, 5 Aug 1969

    Google Scholar 

  84. Short GD, Whittam TV (1983) Zeolite Nu-3. US Patent 4,372,930, 8 Feb 1983

    Google Scholar 

  85. Kuehl GH (1985) Process for making zeolite ZSM-45 with a dimethyldiethylammonium directing agent. US Patent 4,495,303, 22 Jan 1985

    Google Scholar 

  86. Han B, Lee S-H et al (2005) Zeolite synthesis using flexible diquaternary alkylammonium ions (CnH2n+1)2HN+(CH2)5N+H(CnH2n+1)2 with n = 1-5 as structure-directing agents. Chem Mater 17:477–486

    Article  CAS  Google Scholar 

  87. Xu H, Li J et al (2009) Synthesis and properties of a zeolite LEV analogue from the system-Na2O-Al2O3-SiO2-N, N-dimethylpiperidine chloride-H2O. Catal Today 148:6–11

    Article  CAS  Google Scholar 

  88. Inoue T, Itakura M et al (2009) Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous Mesoporous Mater 122:149–154

    Article  CAS  Google Scholar 

  89. Lok BM, Messina CA et al (1984) Silicoaluminophosphate molecular-sieves – another new class of microporous crystalline inorganic solids. J Am Chem Soc 106:6092–6093

    Article  CAS  Google Scholar 

  90. Grunewald A, Gies H (1994) Quinuclidine and 3-azabicyclo[3.2.2]nonane, 2 versatile templates in the synthesis of porous silicates in the SiO2-B2O3-H2O-template system. Microporous Mater 3:159–164

    Article  Google Scholar 

  91. Zhu G, Xiao F-S et al (1997) Synthesis and characterization of a new microporous aluminophosphate with levyne structure in the presence of HF. Microporous Mater 11:269–273

    Article  Google Scholar 

  92. Barrett PA, Jones RH (2000) Evidence for ordering of cobalt ions in the microporous solid acid catalyst CoDAF-4 by single crystal X-ray diffraction and resonant X-ray powder diffraction. Phys Chem Chem Phys 2:407–412

    Article  CAS  Google Scholar 

  93. Zhang H, Yang C et al (2012) Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous Mesoporous Mater 155:1–7

    Article  Google Scholar 

  94. Lawton L, Bennett JM et al (1993) Synthesis and proposed framework topology of zeolite SUZ-4. J Chem Soc Chem Commun 11:894–896

    Article  Google Scholar 

  95. Paik WC, Shin CH et al (2000) Synthesis of zeolites P1 and SUZ-4 through a synergy of organic N,N,N,N′,N′,N′-hexaethylpentanediammonium and inorganic cations. Chem Commun 17:1609–1610

    Article  Google Scholar 

  96. Zhang W, Wu Y et al (2011) Organotemplate-free route for synthesizing SUZ-4 zeolite under static hydrothermal condition. Mater Res Bull 46:1451–1454

    Article  CAS  Google Scholar 

  97. Rubin MK, Rosinski EJ et al (1978) Hydrocarbon conversion with crystalline zeolite ZSM-34. US 4,116,813, 26 Sept 1978

    Google Scholar 

  98. Givens EN, Plank CJ et al (1978) Manufacture of light olefins. US 4,079,095, 14 Mar 1978

    Google Scholar 

  99. Givens EN, Plank CJ et al (1978) Manufacture of light olefins. US 4,079,096, 14 Mar 1978

    Google Scholar 

  100. Occelli ME, Innes RA et al (1987) Quaternary ammonium cation effects on the crystallization of offretite erionite type zeolites. 1. Synthesis and catalytic properties. Zeolites 7:265–271

    Article  CAS  Google Scholar 

  101. Vartuli JC, Kennedy GJ et al (2000) Zeolite syntheses using diamines: evidence for in situ directing agent modification. Microporous Mesoporous Mater 38:247–254

    Article  CAS  Google Scholar 

  102. Wu Z, Song J et al (2008) Organic template free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution. Chem Mater 20:357–359

    Article  CAS  Google Scholar 

  103. Zhang L, Yang C et al (2010) Organotemplate-free syntheses of ZSM-34 zeolite and its heteroatom-substituted analogues with good catalytic performance. Chem Mater 22:3099–3107

    Article  CAS  Google Scholar 

  104. Yang C, Ren L et al (2012) Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. J Mater Chem 22:12238–12245

    Article  CAS  Google Scholar 

  105. Vaughan DEW, Strohmaier KG (1987) Crystalline zeolite (ECR-1) and process for preparing it. US 4,657,748, 14 Apr 1987

    Google Scholar 

  106. Leonowicz ME, Vaughan DEW (1987) Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology. Nature 329:819–821

    Article  CAS  Google Scholar 

  107. Chen CSH, Schlenker JL et al (1996) Synthesis and characterization of synthetic zeolite ECR-1. Zeolites 17:393–400

    Article  CAS  Google Scholar 

  108. Gualtieri AF, Ferrari S et al (2006) Rietveld structure refinement of zeolite ECR-1. Chem Mater 18:76–84

    Article  CAS  Google Scholar 

  109. Song J, Dai L et al (2006) Organic template free synthesis of aluminosilicate zeolite ECR-1. Chem Mater 18:2775–2777

    Article  CAS  Google Scholar 

  110. Ding H, Song J et al (2009) Synthesis of zeolite ECR-1 from hydrothermal phase transformation of zeolite Y. Chem J Chin Univ 30:255–257

    CAS  Google Scholar 

  111. Zhang L, Liu S et al (2012) Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous Mesoporous Mater 147:117–126

    Article  Google Scholar 

  112. Itabashi K, Kamimura Y et al (2012) A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. J Am Chem Soc 134:11542–11549

    Article  CAS  Google Scholar 

  113. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  Google Scholar 

  114. Walsh PJ, Li H et al (2007) A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev 107:2503–2545

    Article  CAS  Google Scholar 

  115. Martins MAP, Frizzo CP et al (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182

    Article  CAS  Google Scholar 

  116. James SL, Adams CJ et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  CAS  Google Scholar 

  117. Pichon A, Lazuen-Garay A et al (2006) Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 8:211–214

    Article  CAS  Google Scholar 

  118. Yuan W, Lazuen-Garay A et al (2010) Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate). CrystEngComm 12:4063–4065

    Article  CAS  Google Scholar 

  119. Klimakow M, Klobes P et al (2010) Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22:5216–5221

    Article  CAS  Google Scholar 

  120. Zhang P, Wang L et al (2011) “Solvent-free” synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). J Mater Chem 21:12026–12033

    Article  CAS  Google Scholar 

  121. Xie Y, Tang Y (1990) Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. Adv Catal 37:1–43

    CAS  Google Scholar 

  122. Xu W, Dong J et al (1990) A novel method for the preparation of zeolite ZSM-5. J Chem Soc Chem Commun :755–756

    Google Scholar 

  123. Ren L, Wu Q et al (2012) Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc 134:15173–15176

    Article  CAS  Google Scholar 

  124. Morris RE, James SL (2013) Solventless synthesis of zeolites. Angew Chem Int Ed 52:2163–2165

    Article  CAS  Google Scholar 

  125. Jin Y, Sun Q et al (2013) Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed 52:9172–9175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangju Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meng, X., Wang, L., Xiao, FS. (2016). Sustainable Routes for Zeolite Synthesis. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_1

Download citation

Publish with us

Policies and ethics