Distributed and Heterogeneous Data Analysis for Smart Urban Planning

  • Eduardo A. OliveiraEmail author
  • Michael Kirley
  • Tom Kvan
  • Justyna Karakiewicz
  • Carlos Vaz
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 527)


Over the past decade, ‘smart’ cities have capitalized on new technologies and insights to transform their systems, operations and services. The rationale behind the use of these technologies is that an evidence-based, analytical approach to decision-making will lead to more robust and sustainable outcomes. However, harvesting high-quality data from the dense network of sensors embedded in the urban infrastructure, and combining this data with social network data, poses many challenges. In this paper, we investigate the use of an intelligent middleware – Device Nimbus – to support data capture and analysis techniques to inform urban planning and design. We report results from a ‘Living Campus’ experiment at the University of Melbourne, Australia focused on a public learning space case study. Local perspectives, collected via crowd sourcing, are combined with distributed and heterogeneous environmental sensor data. Our analysis shows that Device Nimbus’ data integration and intelligent modules provide high-quality support for decision-making and planning.


Smart city Smart campus Middleware Data fusion Urban design Urban planning 



Eduardo A. Oliveira and Carlos Vaz would like to thank National Council for Scientific and Technological Development (CNPq) – Brazil, for supporting their postdoc position (scholarship provided under reports nº BEX 9213/13-9 and nº BEX 11523-13-1).


  1. 1.
    Oliveira, E.A., Kirley, M., Vanz, E., Gama, K.: hSpy: An intelligent framework for context and predictive analysis for smarter health devices (2014)Google Scholar
  2. 2.
    Sun, X.H., Blatecky, A.R.: Middleware: the key to next generation computing. J. Parallel Distrib. Comput. 64(6), 689–691 (2004)CrossRefGoogle Scholar
  3. 3.
    Oliveira, E.A., Michael, K., Jorge, C.B.F.: Device nimbus: an intelligent middleware for smarter services for health and fitness. Int. J. Distrib. Sens. Netw. Article ID: 454626. Provisional PDF (2015)Google Scholar
  4. 4.
    Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J.R., Mellouli, S., Nahon, K., Pardo, T.A., Scholl, H.J.: Understanding smart cities: an integrative framework. In: 2012 45th Hawaii International Conference on System Science (HICSS), IEEE, pp. 2289–2297 (2012)Google Scholar
  5. 5.
    Boulton, A., Brunn, S.D., Devriendt, L.: 18 Cyberinfrastructures and smart world cities: physical, human and soft infrastructures. International Handbook of Globalization and World Cities, 198 (2011)Google Scholar
  6. 6.
    Hollands, R.G.: Will the real smart city please stand up? intelligent, progressive or entrepreneurial? City 12(3), 303–320 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Batty, M., Axhausen, K.W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Portugali, Y.: Smart cities of the future. Eur. Phys. J.-Spec. Top. 214(1), 481–518 (2012)CrossRefGoogle Scholar
  8. 8.
    Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in Europe. J. Urban Technol. 18(2), 65–82 (2011)CrossRefGoogle Scholar
  9. 9.
    Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., Williams, P.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)CrossRefGoogle Scholar
  10. 10.
    Toppeta, D.: The smart city vision: how innovation and ICT can build smart, livable, sustainable cities. The Innovation Knowledge Foundation (2014).
  11. 11.
    Coe, A., Paquet, G., Roy, J.: E-governance and smart communities a social learning challenge. Soc. Sci. Comput. Rev. 19(1), 80–93 (2001)CrossRefGoogle Scholar
  12. 12.
    Saelens, B.E., Sallis, J.F., Frank, L.D.: Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. 25(2), 80–91 (2003)CrossRefGoogle Scholar
  13. 13.
    Thompson, C.W.: Urban open space in the 21st century. Landscape Urban Plan. 60(2), 59–72 (2002)CrossRefGoogle Scholar
  14. 14.
    Force, U.T.: Towards an urban renaissance: final report of the urban task force chaired by Lord Rogers of Riverside, The Department of the Environment. Transport, and Regions (DoE), London (2002)Google Scholar
  15. 15.
    Batty, M.: The New Science of Cities. MIT Press, Cambridge (2013)Google Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Blackstock, M., Kaviani, N., Lea, R., Friday, A.: MAGIC broker 2: an open and extensible platform for the internet of things. In: Internet of Things (IOT), IEEE, pp. 1–8, (2010)Google Scholar
  21. 21.
    Erbad, A., Blackstock, M., Friday, A., Lea, R., Al-Muhtadi, J.: Magic broker: a middleware toolkit for interactive public displays. In: Sixth Annual IEEE International Conference on Pervasive Computing and Communications, PerCom 2008, IEEE, pp. 509–514 (2008)Google Scholar
  22. 22.
    Filipponi, L., Vitaletti, A., Landi, G., Memeo, V., Laura, G., Pucci, P.: Smart city: an event driven architecture for monitoring public spaces with heterogeneous sensors. In: 2010 Fourth International Conference on Sensor Technologies and Applications (SENSORCOMM), IEEE, pp. 281–286 (2010)Google Scholar
  23. 23.
  24. 24.
    Anthopoulos, L., Fitsilis, P.: From digital to ubiquitous cities: defining a common architecture for urban development. In: 2010 Sixth International Conference on Intelligent Environments (IE), IEEE, pp. 301–306 (2010)Google Scholar
  25. 25.
    Ishida, T.: Digital city kyoto. Commun. ACM 45(7), 76–81 (2002)CrossRefGoogle Scholar
  26. 26.
    Lieshout, V.: Configuring the digital city of Amsterdam. N. Media Technol. 3(1), 27–52 (2001)Google Scholar
  27. 27.
    Van Bastelaer, B.: Digital cities and transferability of results. In: 4th EDC Conference on Digital Cities, Salzburg, pp. 61–70 (1998)Google Scholar
  28. 28.
    Yu, Z., Liang, Y., Xu, B., Yang, Y., Guo, B.: Towards a smart campus with mobile social networking. In: 2011 International Conference on Internet of Things (iThings/CPSCom), and 4th International Conference on Cyber, Physical and Social Computing, IEEE, pp. 162–169 (2011)Google Scholar
  29. 29.
    Vieira dos Santos, V., Salgado, C.B.: CEManTIKA: a domain-independent framework for designing context sensitive systems (2008)Google Scholar
  30. 30.
    Kenney, D.R., Dumont, R., Kenney, G.: Mission and Place: Strengthening Learning and Community Through Campus Design. Greenwood Publishing Group, Westport (2005)Google Scholar
  31. 31.
    Oliveira, E.A., Tedesco, P.: I-collaboration: um modelo de colaboração inteligente personalizada para ambientes de EAD. Revista Brasileira de Informática na Educação. 18(1), 17–31 (2010)CrossRefGoogle Scholar
  32. 32.
    Yau, S.S., Gupta, S.K., Karim, F., Ahamed, S.I., Wang, Y., Wang, B.: Smart classroom: enhancing collaborative learning using pervasive computing technology. In: ASEE 2003 Annual Conference and Exposition, pp. 13633–13642. Sn (2003)Google Scholar
  33. 33.
    Halawani, T., Mohandes, M.: Smart card for smart campus: KFUPM case study. In: Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and Systems. ICECS 2003, vol. 3, IEEE, pp. 1252–1255 (2003)Google Scholar
  34. 34.
    Rohs, M., Bohn, J.: Entry points into a smart campus environment-overview of the ETHOC system. In: Proceedings 23rd International Conference on Distributed Computing Systems Workshops 2003, IEEE, pp. 260–266 (2003)Google Scholar
  35. 35.
    Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  36. 36.
    Mirisaee, S.H., Noorzadeh, S., Sami, A., Sameni, R.: Mining friendship from cell-phone switch data. In: 2010 3rd International Conference on Human-Centric Computing (HumanCom), IEEE, pp. 1–5 (2010)Google Scholar
  37. 37.
    Ankolekar, A., Szabo, G., Luon, Y., Huberman, B.A., Wilkinson, D., Wu, F.: Friendlee: a mobile application for your social life. In: Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, p. 27. ACM (2009)Google Scholar
  38. 38.
  39. 39.
    Li, K.A., Sohn, T.Y., Huang, S., Griswold, W.G.: Peopletones: a system for the detection and notification of buddy proximity on mobile phones. In: Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, pp. 160–173. ACM (2008)Google Scholar
  40. 40.
  41. 41.
    Apache Camel Components.
  42. 42.
    JBoss Drools.
  43. 43.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eduardo A. Oliveira
    • 1
    Email author
  • Michael Kirley
    • 1
  • Tom Kvan
    • 1
  • Justyna Karakiewicz
    • 1
  • Carlos Vaz
    • 1
  1. 1.University of MelbourneMelbourneAustralia

Personalised recommendations