Shape Grammars for Architectural Design: The Need for Reframing

  • Pieter PauwelsEmail author
  • Tiemen Strobbe
  • Sara Eloy
  • Ronald De Meyer
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 527)


Although many shape grammars and corresponding implementations have been proposed, shape grammars are not widely adopted by architectural designers. In this paper, we therefore look for the barriers of implementing and using shape grammars for architectural design. We do this by outlining several implementation strategies of shape grammars, we briefly point to our own graph-based design grammar system, and we analyse the resulting overview using theories on how designers think and act upon incoming information. Based on this analysis, we develop and suggest how design grammars might best be implemented and used for architectural design relying on the information technologies available at this particular moment of time.


Architectural design Design space exploration Design thinking Shape grammar 



The authors of this article greatly acknowledge the support received by the IWT Flanders and by the Special Research Fund (BOF) of Ghent University.


  1. 1.
    McKay, A., Chase, S., Shea, K., Chau, H.H.: Spatial grammar implementation: From theory to useable software. Artif. Intell. Eng. Des. Anal. Manuf. 26, 143–159 (2012)CrossRefGoogle Scholar
  2. 2.
    Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture. Inf. Proc. 71, 1460–1465 (1972)Google Scholar
  3. 3.
    Stiny, G.: Two exercises in formal composition. Envir. Plan. B 3, 187–210 (1976)CrossRefGoogle Scholar
  4. 4.
    Stiny, G.: Ice-ray: a note on the generation of Chinese lattice designs. Environ. Plan. B 4, 89–98 (1977)CrossRefGoogle Scholar
  5. 5.
    Stiny, G., Mitchell, W.J.: The Palladian grammar. Environ. Plan. B 5, 5–18 (1978)CrossRefGoogle Scholar
  6. 6.
    Knight, T.W.: Languages of designs: from known to new. Environ. Plan. B 8, 213–238 (1981)CrossRefGoogle Scholar
  7. 7.
    Knight, T.W.: The forty-one steps. Environ. Plan. B 8, 97–114 (1981)CrossRefGoogle Scholar
  8. 8.
    Knight, T.W.: Transformations of languages of designs. Environ. Plan. B, 10, Part 1: 125–128, Part 2: 129–154, Part 3: 155–177 (1983)Google Scholar
  9. 9.
    Heisserman, J.: Generative geometric design and boundary solid grammars. Ph.D. thesis, Carnegie Mellon University (1990)Google Scholar
  10. 10.
    Duarte, J.P.: A discursive grammar for customizing mass housing: the case of Siza’s houses at Malagueira. Autom. Constr. 14, 265–275 (2005)CrossRefGoogle Scholar
  11. 11.
    Koning, H., Eizenberg, J.: The language of the prairie: Frank Lloyd Wright’s prairie houses. Environ. Plan. B 8, 295–323 (1981)CrossRefGoogle Scholar
  12. 12.
    Strobbe, T., Pauwels, P., Verstraeten, R., De Meyer, R., Van Campenhout, J.: Towards a visual approach in the exploration of shape grammars, Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2015, in press)Google Scholar
  13. 13.
    Stiny, G.: Introduction to shape and shape grammars. Environ. Plan. B 7, 343–351 (1980)CrossRefGoogle Scholar
  14. 14.
    Flemming, U.: More than the sum of parts: the grammar of Queen Anne houses. Environ. Plan. B 14, 323–350 (1987)CrossRefGoogle Scholar
  15. 15.
    Cagan, J. and Mitchell, W.J.: Shape Annealing: A New Approach for Controlling Shape Generation, Tech. Rep., Carnegie Mellon University - Engineering Design Research Center (1991)Google Scholar
  16. 16.
    Cagan, J., Mitchell, W.J.: Optimally directed shape generation by shape annealing. Environ. Plan. B 20, 5–12 (1993)CrossRefGoogle Scholar
  17. 17.
    Woodbury, R., Burrow, A.: Whither design space? Artif. Intell. Eng. Des. Anal. Manuf. 20, 63–82 (2006)Google Scholar
  18. 18.
    Gero, J.S.: Towards a model of exploration in computer-aided design. In: Gero, J., Tyugu, E. (eds.), Formal Design Methods for CAD, North-Holland, pp. 315–336 (1994)Google Scholar
  19. 19.
    Lawson, B.: Oracles, draughtsmen, and agents: the nature of knowledge and creativity in design and the role of IT. Autom. Constr. 14, 383–391 (2005)CrossRefGoogle Scholar
  20. 20.
    Stouffs, R., Krishnamurti, R.: The complexity of the maximal representation of shapes. In: Preprints of the IFIP Workshop on Formal Methods for Computer-Aided Design, pp. 53–66 (1993)Google Scholar
  21. 21.
    Krishnamurti, R.: The maximal representation of a shape. Envir. Plan. B 19, 267–288 (1993)CrossRefGoogle Scholar
  22. 22.
    Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M.J., Vargas-Hernandez, N., Wood, K.L.: Computer-Based Design Synthesis Research: An Overview. Journal of Computing and Information Science in Engineering 11, 9–10 (2011)CrossRefGoogle Scholar
  23. 23.
    Gips, J.: Computer implementation of shape grammars (1999)Google Scholar
  24. 24.
    Grasl, T., Economou, A.: From topologies to shapes: parametric shape grammars implemented by graphs. Environ. Plan. B 40, 905–922 (2013)CrossRefGoogle Scholar
  25. 25.
    Heisserman, J.: Generative geometric design. IEEE Comput. Graphics Appl. 14, 37–45 (1994)CrossRefGoogle Scholar
  26. 26.
    Correia, R., Duarte, J.P., Leitao, A.: GRAMATICA: A general 3D shape grammar interpreter targeting the mass customization of housing. In: Achten, H., Pavlicek, J. Hulin, J., Matejdan D. (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference, pp. 489–496 (2012)Google Scholar
  27. 27.
    Grasl, T.: On shapes and topologies: graph theoretic representations of shapes and shape computations. Ph.D. thesis, TU Vienna (2013)Google Scholar
  28. 28.
    Tapia, M.A.: A visual implementation of a shape grammar system. Environ. Plan. B 26, 59–73 (1999)CrossRefGoogle Scholar
  29. 29.
    Hoisl, F., Shea, K.: An interactive, visual approach to developing and applying parametric three-dimensional spatial grammars. Artif. Intell. Eng. Des. Anal. Manuf. 25, 333–356 (2011)CrossRefGoogle Scholar
  30. 30.
    Trescak, T., Esteva, M., Rodriguez, I.: A shape grammar interpreter for rectilinear forms. Comput. Aided Des. 44, 657–670 (2012)CrossRefGoogle Scholar
  31. 31.
    Keles, H.Y., Özkar, M., Tari, S.: Embedding shapes without predefined parts. Environ. Plan. B: Plan. Des. 37, 664–681 (2010)CrossRefGoogle Scholar
  32. 32.
    Strobbe, T., De Meyer, R., Van Campenhout, J.: A generative approach towards performance-based design: using a shape grammar implementation. In: Stouffs, R., Sariyildiz, S. (eds.), Computation and Performance - Proceedings of the 31st eCAADe Conference, pp. 627–633 (2013)Google Scholar
  33. 33.
    Simon, H.A.: The structure of ill-structured problems. Artif. Intell. 4, 181–201 (1973)CrossRefGoogle Scholar
  34. 34.
    Cross, N.: Designerly ways of knowing. Des. Stud. 3, 221–227 (1982)CrossRefGoogle Scholar
  35. 35.
    Maher, M.L., Poon, J.: Modelling design exploration as co-evolution. In: Microcomputers in Civil Engineering. Chapman and Hall, London, pp. 195–210 (1996)Google Scholar
  36. 36.
    Dorst, K., Cross, N.: Creativity in the design process: coevolution of problem and solution. Des. Stud. 22, 425–437 (2001)CrossRefGoogle Scholar
  37. 37.
    Rittel, H., Webber, M.: Dilemmas in a general theory of planning. Policy Sci. 4(2), 155–169 (1973)CrossRefGoogle Scholar
  38. 38.
    Schön, D.: The Reflective Practitioner: How Professionals Think in Action. Temple Smith, London (1983)Google Scholar
  39. 39.
    Goldschmidt, G.: Quo vadis, design space explorer? Artif. Intell. Eng. Des. Anal. Manuf. 20, 105–111 (2006)CrossRefGoogle Scholar
  40. 40.
    Simon, H.A.: Models of Man: Social and Rational. John Wiley and Sons, New York (1957)zbMATHGoogle Scholar
  41. 41.
    Simon, H.A.: Rational choice and the structure of the environment. Psychol. Rev. 63, 129–138 (1956)CrossRefGoogle Scholar
  42. 42.
    Cross, N.: Designerly Ways of Knowing. Birkhauser, Basel (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pieter Pauwels
    • 1
    Email author
  • Tiemen Strobbe
    • 1
  • Sara Eloy
    • 2
  • Ronald De Meyer
    • 1
  1. 1.Ghent UniversityGhentBelgium
  2. 2.Lisbon University InstituteLisbonPortugal

Personalised recommendations