Skip to main content

Facilitating Fire and Smoke Simulation Using Building Information Modeling

  • Conference paper
  • First Online:
Computer-Aided Architectural Design Futures. The Next City - New Technologies and the Future of the Built Environment (CAAD Futures 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 527))

Abstract

CFAST is a two-zone model which simulates fire growth and smoke transport. Manually modeling a building using CFAST user interface is a time consuming and error-prone process. In addition, the limitations in CFAST structure impede data transfer between CFAST and BIM (Building Information Modeling). In this research, we identified major limitations of CFAST, proposed solutions to the limitations, and developed a system for data interchange between BIM and CFAST. This greatly facilitated fire and smoke simulation. We further developed a visualization module to visualize the simulation results to overcome the problems when using SmokeView, an application developed by NIST (National Institute of Standards and Technology). A pilot test is conducted using this system. The simulation process was done in just a few minutes. This is expected to help architects to design buildings safer from building fires, and help students in learning building safety and fire related building codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tunstall, G.: Managing the Building Design Process. Routledge, London (2006)

    Google Scholar 

  2. WFSC: World Fire Statistics Centre Bulletin, vol. 28 (2012). https://www.genevaassociation.org/media/186703/ga2012-fire28.pdf. Accessed

  3. Moghtaderi, B., Novozhilov, V., Fletcher, D.F., Kent, J.H.: A new correlation for bench-scale piloted ignition data of wood. Fire Saf. J. 29(1), 41–59 (1997). doi:10.1016/S0379-7112(97)00004-0

    Article  Google Scholar 

  4. Ohlemiller, T.J., Summerfield, M.: Radiative ignition of polymeric materials in oxygen/nitrogen mixtures. Symp. (Int.) Combust. 13(1), 1087–1094 (1971). doi:10.1016/S0082-0784(71)80106-6

    Article  Google Scholar 

  5. Smith, W.K., King, J.B.: Surface temperatures of materials during radiant heating to ignition. J. Fire Flammability 1(4), 272–288 (1970)

    Google Scholar 

  6. Kishore, K.: Mohan Das, K.: Flammability index of polymeric materials. Colloid Polym. Sci. 258(1), 95–98 (1980)

    Article  Google Scholar 

  7. Babrauskas, V., Lawson, J.R., Walton, W.D., Twilley, W.H.: Upholstered furniture heat release rates measured with a furniture calorimeter. US Department of Commerce, National Bureau of Standards (1982). http://www.nist.gov/manuscript-publication-search.cfm?pub_id=106922. Accessed

  8. Lawson, J.R., Walton, W.D., Twilley, W.H.: Fire Performance of Furnishings as Measured in the NBS Furniture Calorimeter: Part I. US Department of Commerce, National Bureau of Standards (1984). http://fire.nist.gov/bfrlpubs/fire84/art002.html. Accessed

  9. Mouritz, A.P., Mathys, Z., Gibson, A.G.: Heat release of polymer composites in fire. Compos. A Appl. Sci. Manuf. 37(7), 1040–1054 (2006). doi:10.1016/j.compositesa.2005.01.030

    Article  Google Scholar 

  10. Chow, W.K., Leung, C.W.: Survey on partition walls commonly used in Hong Kong and estimation of the heat release rates during fire. Archit. Sci. Rev. 44(4), 379–390 (2001). doi:10.1080/00038628.2001.9696918

    Article  Google Scholar 

  11. Buch, R.R.: Rates of heat release and related fire parameters for silicones. Fire Saf. J. 17(1), 1–12 (1991). doi:10.1016/0379-7112(91)90009-N

    Article  MathSciNet  Google Scholar 

  12. Harada, T.: Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire Mater. 25(4), 161–167 (2001). doi:10.1002/fam.766

    Article  Google Scholar 

  13. Tran, H.C., White, R.H.: Burning rate of solid wood measured in a heat release rate calorimeter. Fire Mater. 16(4), 197–206 (1992). doi:10.1002/fam.810160406

    Article  Google Scholar 

  14. Zhu, J., Morgan, A.B., Lamelas, F.J., Wilkie, C.A.: Fire properties of Polystyrene–Clay nanocomposites. Chem. Mater. 13(10), 3774–3780 (2001). doi:10.1021/cm000984r

    Article  Google Scholar 

  15. Huggett, C.: Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 4(2), 61–65 (1980). doi:10.1002/fam.810040202

    Article  Google Scholar 

  16. Thornton, W.: The relation of oxygen to the heat of combustion of organic compounds. Phil. Mag. J. Sci. 33, 196–203 (1917)

    Article  Google Scholar 

  17. Janssens, M.L.: Measuring rate of heat release by oxygen consumption. Fire Technol. 27(3), 234–249 (1991). doi:10.1007/BF01038449

    Article  Google Scholar 

  18. Quintiere, J.G.: Growth of Fire in Building Compartments. Fire Standards and Safety. In: ASTM STP 614, pp. 131 – 167 (1977)

    Google Scholar 

  19. Quintiere, J.G., Harkleroad, M.T.: New concepts for measuring flame spread properties. fire safety: science and engineering. In: ASTM STP 882, American Society for Testing and Materials, pp. 239–267 (1985)

    Google Scholar 

  20. Hasemi, Y.: Thermal modeling of upward wall flame spread. fire safety science. In: Proceedings of the First International Symposium (1986)

    Google Scholar 

  21. Cheney, N.P., Bary, G.A.V.: The propagationof mass conflagration in a standing eucalyptus forest by the spotting process. In: Mass Fire Symposium, vol. 1 (1969)

    Google Scholar 

  22. Cheney, N., Gould, J.: Fire growth and acceleration. Int. J. Wildland Fire 7(1), 1–5 (1997)

    Article  Google Scholar 

  23. Heskestad, G., Delichatsios, M.A.: The initial convective flow in fire. Symp. (Int.) Combust. 17(1), 1113–1123 (1979). doi:10.1016/S0082-0784(79)80106-X

    Article  Google Scholar 

  24. Larson, D.W., Viskanta, R.: Transient combined laminar free convection and radiation in a rectangular enclosure. J. Fluid Mech. 78(01), 65–85 (1976). doi:10.1017/S0022112076002334

    Article  MATH  Google Scholar 

  25. Peacock, R.D., Jones, W.W., Bukowski, R.W.: Verification of a model of fire and smoke transport. Fire Saf. J. 21(2), 89–129 (1993). doi:10.1016/0379-7112(93)90038-R

    Article  Google Scholar 

  26. Zukoski, E.E., Kubota, T.: Two-layer modeling of smoke movement in building fires. Fire Mater. 4(1), 17–27 (1980). doi:10.1002/fam.810040103

    Article  Google Scholar 

  27. Jones, W.W., Forney, G.P.: Improvement in predicting smoke movement in compartmented structures. Fire Saf. J. 21(4), 269–297 (1993). doi:10.1016/0379-7112(93)90017-K

    Article  Google Scholar 

  28. He, Y., Beck, V.: Smoke spread experiment in a multi-storey building and computer modelling. Fire Saf. J. 28(2), 139–164 (1997). doi:10.1016/S0379-7112(96)00081-1

    Article  Google Scholar 

  29. Birky, M.M., Halpin, B.M., Caplan, Y.H., Fisher, R.S., McAllister, J.M., Dixon, A.M.: Fire fatality study. Fire Mater. 3(4), 211–217 (1979). doi:10.1002/fam.810030406

    Article  Google Scholar 

  30. Terrill, J.B., Montgomery, R.R., Reinhardt, C.F.: Toxic gases from fires. Science 200(4348), 1343–1347 (1978). doi:10.1126/science.208143

    Article  Google Scholar 

  31. Alarie, Y.: Toxicity of Fire Smoke. Crit. Rev. Toxicol. 32(4), 259–289 (2002). doi:10.1080/20024091064246

    Article  Google Scholar 

  32. Bernard, T.E., Duker, J.: Modeling carbon monoxide uptake during work. Am. Ind. Hyg. Assoc. J. 42(5), 361–364 (1981). doi:10.1080/15298668191419884

    Article  Google Scholar 

  33. Esposito, F.M., Alarie, Y.: Inhalation toxicity of carbon monoxide and hydrogen cyanide gases released during the thermal decomposition of polymers. J. Fire Sci. 6(3), 195–242 (1988). doi:10.1177/073490418800600303

    Article  Google Scholar 

  34. Yan, Z., Holmstedt, G.: CFD and experimental studies of room fire growth on wall lining materials. Fire Saf. J. 27(3), 201–238 (1996). doi:10.1016/S0379-7112(96)00044-6

    Article  Google Scholar 

  35. Xue, H., Ho, J.C., Cheng, Y.M.: Comparison of different combustion models in enclosure fire simulation. Fire Saf. J. 36(1), 37–54 (2001). doi:10.1016/S0379-7112(00)00043-6

    Article  Google Scholar 

  36. Karlsson, B.: Modeling fire growth on combustible lining materials in enclosures (dissertation). Lund University (1992). http://lup.lub.lu.se/record/1669903. Accessed

  37. Hadjisophocleous, G.V., Mccartney, C.J.: Guidelines for the use of CFD simulations for fire and smoke modeling. ASHRAE Transactions. American Society of Heating, Refrigerating and Air-conditioning Engineers 111(2), pp. 583–594 (2005). http://cat.inist.fr/?aModele=afficheN&cpsidt=18780300. Accessed

  38. Mouilleau, Y., Champassith, A.: CFD simulations of atmospheric gas dispersion using the fire dynamics simulator (FDS). J. Loss Prev. Process Ind. 22(3), 316–323 (2009). doi:10.1016/j.jlp.2008.11.009

    Article  Google Scholar 

  39. Peacock, R.D., Forney, G.P., Reneke, P.A., Portier, R.W., Jones, W.W.: CFAST, the consolidated model of fire growth and smoke transport. National Institute of Standards and Technology Gaithersburg, MD (1993). http://fire.nist.gov/bfrlpubs/fire93/art001.html. Accessed

  40. NIST: Fire Growth and Smoke Transport Modeling with CFAST (2010). http://www.nist.gov/el/fire_research/cfast.cfm. Accessed

  41. Hokugo, A., Yung, D., Hadjisophocleous, G.: Experiments to validate the nrcc smoke movement model for fire risk-cost assessment. Fire Saf. Sci. 4, 805–816 (1994). doi:10.3801/IAFSS.FSS.4-805

    Article  Google Scholar 

  42. Bailey, J.L., Tatem, P.A.: Validation of Fire/Smoke Spread Model (CFAST) Using Ex-USS SHADWELL Internal Ship Conflagration Control (ISCC) Fire Tests. No. NRL/MR/6180–95-7781. Naval Research Lab, Washington DC (1995)

    Google Scholar 

  43. Peacock, R.D., Reneke, P.A.: Verification and validation of selected fire models for nuclear power plant applications, Volume 5: Consolidated Fire Growth and Smoke Transport Model (CFAST). NUREG-1824. US Nuclear Regulatory Commission, Washington, DC (2007)

    Google Scholar 

  44. Bailey, J.L., et al.: Development and validation of corridor flow submodel for CFAST. J. Fire. Prot. Eng. 12(3), 139–161 (2002)

    Article  Google Scholar 

  45. BIM forum: Level Of Development Specification (2013). http://bimforum.org/wp-content/uploads/2013/08/2013-LOD-Specification.pdf. Accessed

  46. Peacock, R.D., Reneke, P.A. Forney, G.P.: CFAST – Consolidated Model of Fire Growth and Smoke Transport (Version 6) User’s Guide. NIST SP 1041r1. National Institute of Standards and Technology (2013). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1041r1.pdf. Accessed

  47. Floyd, J.: Comparison of CFAST and FDS for Fire Simulation with the HDR T51 and T52 Tests. US Department of Commerce, Technology Administration, National Institute of Standards and Technology (2002)

    Google Scholar 

Download references

Acknowledgements

Funding of his research is provided by Natural Science Fund of China (grant No. 51308377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengde Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, C., Zarrinmehr, S., Asl, M.R., Clayton, M.J. (2015). Facilitating Fire and Smoke Simulation Using Building Information Modeling. In: Celani, G., Sperling, D., Franco, J. (eds) Computer-Aided Architectural Design Futures. The Next City - New Technologies and the Future of the Built Environment. CAAD Futures 2015. Communications in Computer and Information Science, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47386-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47386-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47385-6

  • Online ISBN: 978-3-662-47386-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics