Advertisement

Coal Swelling

  • Ke-Chang XieEmail author
Chapter
  • 736 Downloads

Abstract

Coal swelling is a phenomenon associated with physical and morphological changes that occur when coal is steeped in a particular solvent. Coal may be considered as a cross-linked polymeric macromolecule that may allow particular solvent molecules to penetrate the flexible framework. Analysis of the changes to the coal and solvent during swelling can provide valuable structural information on the coal, and facilitate more efficient use of this coal. This chapter describes coal swelling from a phenomenological viewpoint. We discuss prior studies in this area and the models that have been used to describe the swelling behavior. We compare the behavior of raw coal against that which has been swelled in pyrolysis and liquefaction processes. We also study the changes in properties (thermal, pore, and surface effects), char properties that occur and demonstrate the utility of swelling as a technique to probe the coal structure. We discuss the relationship between swelling and structural parameters, and present an investigation of the swelling behaviors of eight Chinese coals.

Keywords

Coal Sample Solvent Ratio Coal Rank Solvent Diffusion Coal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    van Krevelen DW (1961) Coal. Elsevier Scientific Publishing Company, Amsterdam 433Google Scholar
  2. 2.
    Sanada Y et al (1966) Fuel 45:295Google Scholar
  3. 3.
    Solomon PR et al (1994) Prepr Pap ACS Div Fuel Chem 39(1):68Google Scholar
  4. 4.
    Pande S et al (2001) Energy Fuels 15:1063CrossRefGoogle Scholar
  5. 5.
    Nishioka M et al (2001) Energy Fuels 15:1270CrossRefGoogle Scholar
  6. 6.
    Nishioka M et al (2002) Energy Fuels 16:1109CrossRefGoogle Scholar
  7. 7.
    Giri CC et al (2000) Fuel 79:577CrossRefGoogle Scholar
  8. 8.
    Peppas NA et al (1983) Chem Eng Commun 37:333CrossRefGoogle Scholar
  9. 9.
    Brenner D et al (1985) ACS Div Fuel Chem Prepr 30(1):71Google Scholar
  10. 10.
    Alfrey T et al (1966) Polym Sci 2:249Google Scholar
  11. 11.
    van Krevelen DW (1946) Fuel 25:104Google Scholar
  12. 12.
    Solomon PR et al (1988) Energy Fuel 2:405CrossRefGoogle Scholar
  13. 13.
    Wolf DW (1960) Fuel 39:25Google Scholar
  14. 14.
    Dryden IG (1951) Fuel 30:145Google Scholar
  15. 15.
    Meyers RA (1982) Coal structure. Academic Press, New York p254Google Scholar
  16. 16.
    Cody GD et al (1988) Energy Fuel 2:340CrossRefGoogle Scholar
  17. 17.
    Solomon PR et al (1993) Fuel 72:587CrossRefGoogle Scholar
  18. 18.
    Jurkiewicz A et al (1981) Fuel 60:1167CrossRefGoogle Scholar
  19. 19.
    Jurkiewicz A et al (1982) Fuel 61:64CrossRefGoogle Scholar
  20. 20.
    Brenner D (1983) Fuel 62:1347CrossRefGoogle Scholar
  21. 21.
    Nishioka M (1993) ACS Div Fuel Chem Prepr 38(2):878Google Scholar
  22. 22.
    Brenner D (1985) Fuel 64:167CrossRefGoogle Scholar
  23. 23.
    Szeliga J et al (1983) Fuel 62:1229CrossRefGoogle Scholar
  24. 24.
    Hall PJ et al (1988) Fuel 67:863CrossRefGoogle Scholar
  25. 25.
    Ndaji FE et al (1993) Fuel 72:1531CrossRefGoogle Scholar
  26. 26.
    Aida T et al (1985) Am Chem Soc Div Fuel Chem Prepr 30(1):95Google Scholar
  27. 27.
    Ndaji FE et al (1995) Fuel 74:842CrossRefGoogle Scholar
  28. 28.
    Brenner D (1984) Fuel 63:1225CrossRefGoogle Scholar
  29. 29.
    Ndaji FE et al (1993) Fuel 74:932CrossRefGoogle Scholar
  30. 30.
    Turpin M et al (1978) ICCS. Elsevier, New York, p 85Google Scholar
  31. 31.
    Larsen JW et al (1991) Energy Fuel 5:57CrossRefGoogle Scholar
  32. 32.
    Nishioka M (1993) Fuel 72:1001CrossRefGoogle Scholar
  33. 33.
    Suuberg EM et al (1993) Energy Fuel 7:384CrossRefGoogle Scholar
  34. 34.
    Larsen JM et al (1989) Energy Fuel 3:557CrossRefGoogle Scholar
  35. 35.
    Solomon PR (1990) Energy Fuel 4:42CrossRefGoogle Scholar
  36. 36.
    Barton WA et al (1984) Fuel 63:1202CrossRefGoogle Scholar
  37. 37.
    Kazuhiro M (1994) Energy Fuel 8:868CrossRefGoogle Scholar
  38. 38.
    Miura K (1991) Energy Fuel 5:803CrossRefGoogle Scholar
  39. 39.
    Solomon PR (1984) Fuel 63:1302CrossRefGoogle Scholar
  40. 40.
    Suuberg EM (1985) Fuel 64:1668CrossRefGoogle Scholar
  41. 41.
    Suuberg EM (1991) ACS Div Fuel Chem Prep 36:43Google Scholar
  42. 42.
    Yun YS et al (1993) Fuel 72:1245CrossRefGoogle Scholar
  43. 43.
    Joseph JT (1991) Fuel 70(1):139CrossRefGoogle Scholar
  44. 44.
    Suuberg EM et al (1991) Energy Fuel 11(6):1150Google Scholar
  45. 45.
    Fu XC et al (1990) Physical chemistry, 4th edn. Advanced Education Press, Beijing, p 942Google Scholar
  46. 46.
    He MJ (1991) Polymer physics. Fudan University Press, Shanghai, p 58Google Scholar
  47. 47.
    Kovac J (1978) Macromolecules 11:362CrossRefGoogle Scholar
  48. 48.
    Barr-Howell BD et al (1985) PolymBull 13:91Google Scholar
  49. 49.
    Larsen JW et al (1990) Energy Fuel 4:107CrossRefGoogle Scholar
  50. 50.
    Liotta R et al (1983) Fuel 62:781CrossRefGoogle Scholar
  51. 51.
    Hombach HP (1983) Proc Abstr 78:19153xGoogle Scholar
  52. 52.
    Marzec A (1986) Fuel Process Technol 14:39CrossRefGoogle Scholar
  53. 53.
    Xie KC, Li F et al (2000) Fuel Process Technol 64:241CrossRefGoogle Scholar
  54. 54.
    Gether JS (1987) J Am Chem Soc Div Fuel Chem Prepr 32:239Google Scholar
  55. 55.
    van Niekerk D, Mathews JP (2010) Fuel 89:73CrossRefGoogle Scholar
  56. 56.
    van Niekerk D et al (2008) Int J Coal Geol 76:290CrossRefGoogle Scholar
  57. 57.
    Li X et al (2006) Fuel 85:1700CrossRefGoogle Scholar
  58. 58.
    Yua J et al (2007) J Prog Energy Combust Sci 33:135CrossRefGoogle Scholar
  59. 59.
    Maroto-Valer M et al (1998) Energy Fuel 12:833CrossRefGoogle Scholar
  60. 60.
    Wan-taek Cho et al (2012) Korean J Chem Eng 29:190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Taiyuan University of TechnologyTaiyuanChina
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations