Coal Depolymerization and Liquefaction

  • Ke-Chang XieEmail author


Coal is generally an insoluble material which is an obstacle to solution based chemical analysis techniques. It can be useful to consider coal as a complex polymeric substance, composed of a wide variety of monomeric units with a disorganized structure that resists dissolution. Depolymerization and liquefaction studies concern processes that break down these insoluble polymers into soluble constituents. This can be achieved indirectly via gasification, however direct methods involving solvent extraction liquefaction, and catalytic liquefaction can give a deep insight into the chemical structure and reactivity of the precursor coal that is used. In this chapter we discuss the various conditions such as temperature solvent and catalysts that are used for liquefaction of coal and their applications to the study of different Chinese coal types. We introduce the mechanisms that contribute to specific composition of soluble fractions, and pay particular attention to the use of infrared spectroscopy in the study of these components.


Ethyl Benzoate Coal Liquefaction Coal Pyrolysis Supercritical Methanol Aliphatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Xie KC (1998) Fuel Chem 19(2):55Google Scholar
  2. 2.
    Heredy LA et al (1964) Fuel 43:414Google Scholar
  3. 3.
    Holy NL (1974) Chem Rev 74:243CrossRefGoogle Scholar
  4. 4.
    Heredy LA (1979) Am Chem Soc Prepr Div Fuel Chem 24(1):142Google Scholar
  5. 5.
    Meriam JS et al (1981) Fuel 60:542CrossRefGoogle Scholar
  6. 6.
    Ashida R et al (2008) Fuel 87:576CrossRefGoogle Scholar
  7. 7.
    Ashida R et al (2009) Fuel 88:1485CrossRefGoogle Scholar
  8. 8.
    Masaki K et al (2004) Energy Fuel 18:995CrossRefGoogle Scholar
  9. 9.
    Morimoto M et al (2009) Energy Fuel 23:4533CrossRefGoogle Scholar
  10. 10.
    Wang J et al (2005) Energy Fuel 19:2114CrossRefGoogle Scholar
  11. 11.
    Sharma A et al (2008) Energy Fuel 22:3561CrossRefGoogle Scholar
  12. 12.
    Sharma A et al (2008) Fuel 87:491CrossRefGoogle Scholar
  13. 13.
    Sharma A et al (2008) Fuel 87:2686CrossRefGoogle Scholar
  14. 14.
    Sharma A et al (2009) Energy Fuel 23:1888CrossRefGoogle Scholar
  15. 15.
    Miura K (2000) Fuel Process Technol 62:119MathSciNetCrossRefGoogle Scholar
  16. 16.
    Geymer DO (1974) US Patent 3,844,928, 5 Oct 1974Google Scholar
  17. 17.
    Bodily DM et al (1972) Am Chem Soc Prepr Div Fuel Chem 16(2):163Google Scholar
  18. 18.
    Bodily DM et al (1974) Am Chem Soc Prepr Div Fuel Chem 9(1):163Google Scholar
  19. 19.
    Tanner KI et al (1981) Fuel 60:52CrossRefGoogle Scholar
  20. 20.
    Oblad HB (1982) Ph.D. Dissertation University of UtahGoogle Scholar
  21. 21.
    Mobley DP et al (1980) J Catal 64:494CrossRefGoogle Scholar
  22. 22.
    Jensen RE (1981) MS Thesis University of UtahGoogle Scholar
  23. 23.
    Li CQ et al (2003) Energy Fuel 17:768CrossRefGoogle Scholar
  24. 24.
    Takahashi K et al (2001) Energy Fuel 15:141CrossRefGoogle Scholar
  25. 25.
    Opaprakasit P et al (2002) Energy Fuel 16:543CrossRefGoogle Scholar
  26. 26.
    Makabe M et al (1981) Fuel Process Technol 5:129CrossRefGoogle Scholar
  27. 27.
    Makabe M et al (1981) Fuel 60:327CrossRefGoogle Scholar
  28. 28.
    Ouchi K et al (1981) Fuel 60:474CrossRefGoogle Scholar
  29. 29.
    Lu HY et al (2011) Energy Fuel 25:2741CrossRefGoogle Scholar
  30. 30.
    Anderson LL et al (1981) ACS Symp Ser 169:223Google Scholar
  31. 31.
    Lu HY et al (2010) J Wuhan Univ Sci Technol 33:83Google Scholar
  32. 32.
    Lei ZP et al (2011) Energy 36:3058CrossRefGoogle Scholar
  33. 33.
    Sakbut PD et al (1988) Fuel Process Technol 18:287CrossRefGoogle Scholar
  34. 34.
    Whitehurst DD et al (1976) Am Chem Soc Prepr Div Fuel Chem 21(5):127Google Scholar
  35. 35.
    Neavel RC (1976) Fuel 55:237CrossRefGoogle Scholar
  36. 36.
    Wiser WH et al (1976) J Appl Chem Biotechnol 21:82CrossRefGoogle Scholar
  37. 37.
    Wiser WH (1968) Fuel 47:475Google Scholar
  38. 38.
    Benjamin BM et al (1978) Fuel 57:267Google Scholar
  39. 39.
    Roy MM (1957) Fuel 35:926Google Scholar
  40. 40.
    Li XL et al (1999) 10th Int Conf Coal Sci, TaiyuanGoogle Scholar
  41. 41.
    Zhu SY et al (1994) Fuel Chem 22(3):427Google Scholar
  42. 42.
    Li F et al (1994) Fuel Sci Tech Int’l 12(1):151Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Taiyuan University of TechnologyTaiyuanChina
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations