Skip to main content

Coal Depolymerization and Liquefaction

  • Chapter
  • First Online:
  • 892 Accesses

Abstract

Coal is generally an insoluble material which is an obstacle to solution based chemical analysis techniques. It can be useful to consider coal as a complex polymeric substance, composed of a wide variety of monomeric units with a disorganized structure that resists dissolution. Depolymerization and liquefaction studies concern processes that break down these insoluble polymers into soluble constituents. This can be achieved indirectly via gasification, however direct methods involving solvent extraction liquefaction, and catalytic liquefaction can give a deep insight into the chemical structure and reactivity of the precursor coal that is used. In this chapter we discuss the various conditions such as temperature solvent and catalysts that are used for liquefaction of coal and their applications to the study of different Chinese coal types. We introduce the mechanisms that contribute to specific composition of soluble fractions, and pay particular attention to the use of infrared spectroscopy in the study of these components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xie KC (1998) Fuel Chem 19(2):55

    Google Scholar 

  2. Heredy LA et al (1964) Fuel 43:414

    Google Scholar 

  3. Holy NL (1974) Chem Rev 74:243

    Article  Google Scholar 

  4. Heredy LA (1979) Am Chem Soc Prepr Div Fuel Chem 24(1):142

    Google Scholar 

  5. Meriam JS et al (1981) Fuel 60:542

    Article  Google Scholar 

  6. Ashida R et al (2008) Fuel 87:576

    Article  Google Scholar 

  7. Ashida R et al (2009) Fuel 88:1485

    Article  Google Scholar 

  8. Masaki K et al (2004) Energy Fuel 18:995

    Article  Google Scholar 

  9. Morimoto M et al (2009) Energy Fuel 23:4533

    Article  Google Scholar 

  10. Wang J et al (2005) Energy Fuel 19:2114

    Article  Google Scholar 

  11. Sharma A et al (2008) Energy Fuel 22:3561

    Article  Google Scholar 

  12. Sharma A et al (2008) Fuel 87:491

    Article  Google Scholar 

  13. Sharma A et al (2008) Fuel 87:2686

    Article  Google Scholar 

  14. Sharma A et al (2009) Energy Fuel 23:1888

    Article  Google Scholar 

  15. Miura K (2000) Fuel Process Technol 62:119

    Article  MathSciNet  Google Scholar 

  16. Geymer DO (1974) US Patent 3,844,928, 5 Oct 1974

    Google Scholar 

  17. Bodily DM et al (1972) Am Chem Soc Prepr Div Fuel Chem 16(2):163

    Google Scholar 

  18. Bodily DM et al (1974) Am Chem Soc Prepr Div Fuel Chem 9(1):163

    Google Scholar 

  19. Tanner KI et al (1981) Fuel 60:52

    Article  Google Scholar 

  20. Oblad HB (1982) Ph.D. Dissertation University of Utah

    Google Scholar 

  21. Mobley DP et al (1980) J Catal 64:494

    Article  Google Scholar 

  22. Jensen RE (1981) MS Thesis University of Utah

    Google Scholar 

  23. Li CQ et al (2003) Energy Fuel 17:768

    Article  Google Scholar 

  24. Takahashi K et al (2001) Energy Fuel 15:141

    Article  Google Scholar 

  25. Opaprakasit P et al (2002) Energy Fuel 16:543

    Article  Google Scholar 

  26. Makabe M et al (1981) Fuel Process Technol 5:129

    Article  Google Scholar 

  27. Makabe M et al (1981) Fuel 60:327

    Article  Google Scholar 

  28. Ouchi K et al (1981) Fuel 60:474

    Article  Google Scholar 

  29. Lu HY et al (2011) Energy Fuel 25:2741

    Article  Google Scholar 

  30. Anderson LL et al (1981) ACS Symp Ser 169:223

    Google Scholar 

  31. Lu HY et al (2010) J Wuhan Univ Sci Technol 33:83

    Google Scholar 

  32. Lei ZP et al (2011) Energy 36:3058

    Article  Google Scholar 

  33. Sakbut PD et al (1988) Fuel Process Technol 18:287

    Article  Google Scholar 

  34. Whitehurst DD et al (1976) Am Chem Soc Prepr Div Fuel Chem 21(5):127

    Google Scholar 

  35. Neavel RC (1976) Fuel 55:237

    Article  Google Scholar 

  36. Wiser WH et al (1976) J Appl Chem Biotechnol 21:82

    Article  Google Scholar 

  37. Wiser WH (1968) Fuel 47:475

    Google Scholar 

  38. Benjamin BM et al (1978) Fuel 57:267

    Google Scholar 

  39. Roy MM (1957) Fuel 35:926

    Google Scholar 

  40. Li XL et al (1999) 10th Int Conf Coal Sci, Taiyuan

    Google Scholar 

  41. Zhu SY et al (1994) Fuel Chem 22(3):427

    Google Scholar 

  42. Li F et al (1994) Fuel Sci Tech Int’l 12(1):151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Chang Xie .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xie, KC. (2015). Coal Depolymerization and Liquefaction. In: Structure and Reactivity of Coal. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47337-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47337-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47336-8

  • Online ISBN: 978-3-662-47337-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics