Advertisement

Coal Pyrolysis Reactions

  • Ke-Chang XieEmail author
Chapter

Abstract

Pyrolysis processes are among the most important of coal’s reactions and a necessary process for the production of coke used in multiple industries. Additionally, the study of pyrolysis processes gives insight into the structure and composition of different types of coal. Owing to the complexity of these chemical and physical decomposition processes, they remain poorly understood. In this chapter, we discuss some of the general physical and chemical models that are used to describe the changes that various types of coal undergo during thermal decomposition in the absence of oxygen. The distribution of chemical products, kinetics and thermodynamic parameters of pyrolysis reactions are introduced and related to specific experimental methods and techniques. In this context, the findings of studies into various types of Chinese coal are presented. This includes discussion of the stages that occur at different pyrolysis temperatures and how the pyrolysis behavior is affected by coal type. The results we present are rationalized in terms of the structural properties of the coal.

Keywords

Coal Sample Pyrolysis Product Coal Rank Coal Structure Coal Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Howard JB et al (1967) Ind Eng Chem Process Des Dev 6:74CrossRefGoogle Scholar
  2. 2.
    Suuberg EM et al (1985) Fuel 64:1668CrossRefGoogle Scholar
  3. 3.
    Suuberg EM et al (1985) Fuel 64:956CrossRefGoogle Scholar
  4. 4.
    Gavalas GR et al (1981) Ind Eng Chem Fundam 20(2):113CrossRefGoogle Scholar
  5. 5.
    Gavalas GR et al (1981) Ind Eng Chem Fundam 20(2):122CrossRefGoogle Scholar
  6. 6.
    Shi L et al (2013) Fuel Process Technol 108:125CrossRefGoogle Scholar
  7. 7.
    Li G et al (2014) Energy Fuels 29(2):980CrossRefGoogle Scholar
  8. 8.
    van Krevelen DW (1981) Coal. Elsevier Scientific Publishing Company, Amsterdam p263Google Scholar
  9. 9.
    Nusselt WZ (1924) VDI 68Google Scholar
  10. 10.
    Badzioch S (1967) Bcura Month Bull 31(4):193Google Scholar
  11. 11.
    Kabayashi H (1977) In: 6th symposium (international) on combustion 411Google Scholar
  12. 12.
    Pitt GJ et al (1962) Fuel 41:267Google Scholar
  13. 13.
    Anthong D B et al (1975) In: 15th symposium on combustion, 1303Google Scholar
  14. 14.
    Suuberg EM (1977) Sc D thesis, University of Cambridge, 50Google Scholar
  15. 15.
    Given PH et al (1960) Fuel 39:147Google Scholar
  16. 16.
    Wiser WH et al (1967) Ind Eng Chem Process Des Dev 6:133CrossRefGoogle Scholar
  17. 17.
    Suuberg EM et al (1978) Ind Eng Chem Process Des Dev 17:34CrossRefGoogle Scholar
  18. 18.
    Gavalas GR et al (1981) Ind Eng Chem Found 20:113Google Scholar
  19. 19.
    Badzioch S et al (1970) Ind Eng Chem Process Des Dev 9:521CrossRefGoogle Scholar
  20. 20.
    Wiser WH et al (1967) Ind Eng Chem Process Des Dev 6:133CrossRefGoogle Scholar
  21. 21.
    Koch V et al (1969) Brennstoff-Chemie 50:369Google Scholar
  22. 22.
    Maria M et al (1983) Fuel 62:1393CrossRefGoogle Scholar
  23. 23.
    Qiu JH (1994) Fuel Chem J 22:316Google Scholar
  24. 24.
    Johnston PR et al (1993) J Colloid Interface Sci 155:146CrossRefGoogle Scholar
  25. 25.
    He XM (2010) Coal chemistry. Metallurgical Industry Press, Beijing, p 224Google Scholar
  26. 26.
    van Krevelen DW (1981) Coal. Elsevier Scientific Publishing Company, Amsterdam p287Google Scholar
  27. 27.
    Coats AW et al (1964) Nature 201:68CrossRefGoogle Scholar
  28. 28.
    Marzec A et al (1994) Fuel 73(8):1294CrossRefGoogle Scholar
  29. 29.
    van Heek KH et al (1994) Fuel 73(6):886CrossRefGoogle Scholar
  30. 30.
    Vulava VM et al (2007) Chemosphere 68(3):554CrossRefGoogle Scholar
  31. 31.
    Solomon PR (1987) Coal Sci Technol 11:601Google Scholar
  32. 32.
    Leveut B et al (1995) Fuel 74(11):1618CrossRefGoogle Scholar
  33. 33.
    Liu ZH (1991) Introduction to thermoanalysis. Chemical Industry Press, BeijingGoogle Scholar
  34. 34.
    Solomon PR et al (1992) Prog Energy Combust Sci 18:133CrossRefGoogle Scholar
  35. 35.
    Roberts J (1924) Fuel Sci Pract 3:301Google Scholar
  36. 36.
    Gillet A (1946) Rew Universelle Mines 89:145Google Scholar
  37. 37.
    Dulhunty JA (1953) Fuel 32:441Google Scholar
  38. 38.
    Saxby JD et al (1985) Proc Int Conf Coal Sci 15Google Scholar
  39. 39.
    Rohrback BG et al (1984) AAPG Bull 68:961Google Scholar
  40. 40.
    Connan J et al (1980) Geochim Cosmochim Acta 44:1CrossRefGoogle Scholar
  41. 41.
    Karweil J (1956) Dtsch Geol Gesell 107(2):132Google Scholar
  42. 42.
    Lu S et al (1994) Exp Pet Geol 16(3):290Google Scholar
  43. 43.
    Lewan MD (1979) Science 203:897CrossRefGoogle Scholar
  44. 44.
    Michels R et al (1994) Fuel 73(11):1691CrossRefGoogle Scholar
  45. 45.
    Behar F et al (2003) Org Geochem 34(4):575CrossRefGoogle Scholar
  46. 46.
    Tannenbaum E et al (1985) Geochim Cosmochim Acta 49(12):2589CrossRefGoogle Scholar
  47. 47.
    Yang T et al (1983) Pet Explor Dev (6):29Google Scholar
  48. 48.
    Wiktorsson LP et al (2000) Fuel 79(6):701CrossRefGoogle Scholar
  49. 49.
    Lu SF et al (1994) Pet Explor Dev 21(3):46Google Scholar
  50. 50.
    Lo HB (1991) Org Geochem 17(4):415CrossRefGoogle Scholar
  51. 51.
    Huang DF et al (1987) Chinese Sci Bull 32(11):1266Google Scholar
  52. 52.
    Ganz HHJ (1991) Southeast Asian Earth Sci 5:19CrossRefGoogle Scholar
  53. 53.
    Marzec A et al (1994) Fuel 73(8):129CrossRefGoogle Scholar
  54. 54.
    Idris SS et al (2010) Bioresour Technol 101(12):4584CrossRefGoogle Scholar
  55. 55.
    Dong J et al (2012) J Hazard Mater 243:80CrossRefGoogle Scholar
  56. 56.
    Solomon PR et al (1992) Prog Energ Comb Sci 18:133CrossRefGoogle Scholar
  57. 57.
    Marzec A et al (1992) Energy Fuel 6:97CrossRefGoogle Scholar
  58. 58.
    Solomon PR et al (1994) Fuel 73(8):1371CrossRefGoogle Scholar
  59. 59.
    Schulten HR et al (1992) Energy Fuel 6:103CrossRefGoogle Scholar
  60. 60.
    Marzec A et al (1991) ACS Div Fuel Chem Prep 36:454Google Scholar
  61. 61.
    Chauvin R et al (1969) Bull Soc Chem Er 11:3916Google Scholar
  62. 62.
    Derbyshire F et al (1989) Fuel 68:1091CrossRefGoogle Scholar
  63. 63.
    Nishioka M (1988) Energy Fuel 2:351Google Scholar
  64. 64.
    Marzec A (1982) Fuel 62:977CrossRefGoogle Scholar
  65. 65.
    Bodzek D et al (1981) Fuel 60:47CrossRefGoogle Scholar
  66. 66.
    Szeliga J (1983) Fuel 62:1229CrossRefGoogle Scholar
  67. 67.
    Pajak J et al (1985) Fuel 64:64CrossRefGoogle Scholar
  68. 68.
    Tian D et al (2010) Mining Sci Technol 20(4):562Google Scholar
  69. 69.
    Jurkiewicz A et al (1989) Fuel 68:1097CrossRefGoogle Scholar
  70. 70.
    Jurkiewicz A et al (1990) Fuel 69:805Google Scholar
  71. 71.
    van Heek KH (1994) Fuel 73(6):894Google Scholar
  72. 72.
    Buxhanan AC et al (1994) Prep Pap ACS Fuel Chem 39(11):22Google Scholar
  73. 73.
    Son JB (1990) Coal science and chemistry. Elsevier, Bredenberg p332Google Scholar
  74. 74.
    Genetti DB et al (1995) In: 8th international conference on coal science, SpainGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Taiyuan University of TechnologyTaiyuanChina
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations