Skip to main content

Laser Applications for Vital Pulp Therapy

  • Chapter
Lasers in Restorative Dentistry

Abstract

The conservation of pulp vitality is one of the objectives of restorative dentistry.

The maintenance of pulp vitality depends on a correct diagnosis of normal pulp or reversible pulpitis and on a correct therapeutic approach. The therapy varies depending on the degree of contamination of the pulp tissue. The interventions include the therapy of dentin hypersensitivity, the treatment of deep dentin caries, the direct pulp capping, the partial pulpotomy, and the apexogenesis (root formation). The erbium lasers greatly improve the decontamination of deep caries and are very useful for dental excavation due to the selectivity of action on carious tissue. Also all the laser wavelengths are used for coagulation of the exposed pulp, so creating the biological bases for the formation of tertiary dentin. Studies from literature are shown and operative protocols are presented by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Defocus mode is a term that indicates a working distance where the laser spot is not at focus; consequently, the fluence decreases as a function of the distance. For pulp coagulation, the author suggests to use the lowest energy available and to start the irradiation from 1 cm far from the surface, slowly focusing toward the surface and the fiber/tip until the wanted effect is visible; stop when the correct working distance is found.

References

  1. Olivi G, Genovese MD. Erbium chromium laser in pulp capping treatment. J Oral Laser Appl. 2006;6(4):291–9.

    Google Scholar 

  2. Olivi G, Genovese MD, Maturo P, Docimo R. Pulp capping: advantages of using laser technology. Eur J Paediatr Dent. 2007;8(2):89–95.

    PubMed  Google Scholar 

  3. Olivi G, Genovese MD, Parker S, Benedicenti S. Terapia della polpa vitale: vantaggi dell’utilizzo della tecnologia laser. Giugno: Dentista Moderno; 2010. p. 76–86.

    Google Scholar 

  4. Olivi G, Margolis F, Genovese MD. Pediatric laser dentistry: a user’s guide. Chicago: Quintessence Pub; 2011. p. 101–7. Chapter 8.

    Google Scholar 

  5. Karim BF, Gillam DG. The efficacy of strontium and potassium toothpastes in treating dentine hypersensitivity: a systematic review. Int Dent J. 2013;2013:573258. doi:10.1155/2013/573258. Epub 2013 Apr 8.

    Article  Google Scholar 

  6. Miglani S, Aggarwal V, Ahuja B. Dentin hypersensitivity: recent trends in management. J Conserv Dent. 2010;13(4):218–24.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Matsumoto K, Kimura Y. Laser therapy of dentin hypersensitivity. J Oral Laser Appl. 2007;7:7–25.

    Google Scholar 

  8. Brännström M, Åström A. The hydrodynamics of the dentine; its possible relationship to dentinal pain. Int Dent J. 1972;22:219–27.

    PubMed  Google Scholar 

  9. Absi EG, Addy M, Adams D. Dentine hypersensitivity. A study of the patency of dentinal tubules in sensitive and non-sensitive cervical dentine. J Clin Periodontol. 1987;14:280–4.

    Article  PubMed  Google Scholar 

  10. Hargreaves KM, Cohen S, editors. Berman LH, web editor. Cohen’s pathways of the pulp. 10th ed. St. Louis: Mosby Elsevier; 2010. p. 510, 521.

    Google Scholar 

  11. Barthel CR, Rosenkranz B, Leuenberg A, Roulet JF. Pulp capping of carious exposures: treatment outcome after 5 and 10 years—a retrospective study. J Endod. 2000;26(9):525–8.

    Article  PubMed  Google Scholar 

  12. Stanley HR. Pulp capping: conserving the dental pulp—can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol. 1989;68(5):628–39.

    Article  PubMed  Google Scholar 

  13. Ward J. Vital pulp therapy in cariously exposed permanent teeth and its limitations. Aust Endod J. 2002;28(1):29–37.

    Article  PubMed  Google Scholar 

  14. Pini-Prato G, Nieri M, Pagliaro U, Giorgi TS, La Marca M, Franceschi D, Buti J, Giani M, Weiss JH, Padeletti L, Cortellini P, Chambrone L, Barzagli L, Defraia E, Rotundo R, National Association of Italian Dentists (ANDI)–Tuscany Region. Surgical treatment of single gingival recessions: clinical guidelines. Eur J Oral Implantol. 2014;7(1):9–43.

    PubMed  Google Scholar 

  15. Pesevska S, Nakova M, Ivanovski K, Angelov N, Kesic L, Obradovic R, Mindova S, Nares S. Dentinal hypersensitivity following scaling and root planing: comparison of low-level laser and topical fluoride treatment. Lasers Med Sci. 2010;25(5):647–50. Epub 2009 Jun 1.

    Article  PubMed  Google Scholar 

  16. Femiano F, Femiano R, Lanza A, Festa MV, Rullo R, Perillo L. Efficacy of diode laser in association to sodium fluoride vs Gluma desensitizer on treatment of cervical dentin hypersensitivity. A double blind controlled trial. Am J Dent. 2013;26(4):214–8.

    PubMed  Google Scholar 

  17. Sicilia A, Cuesta-Frechoso S, Suárez A, Angulo J, Pordomingo A, De Juan P. Immediate efficacy of diode laser application in the treatment of dentine hypersensitivity in periodontal maintenance patients: a randomized clinical trial. J Clin Periodontol. 2009;36(8):650–60. Epub 2009 Jun 10.

    Article  PubMed  Google Scholar 

  18. Yilmaz HG, Kurtulmus-Yilmaz S, Cengiz E. Long-term effect of diode laser irradiation compared to sodium fluoride varnish in the treatment of dentine hypersensitivity in periodontal maintenance patients: a randomized controlled clinical study. Photomed Laser Surg. 2011;29(11):721–5. Epub 2011 Jun 13.

    Article  PubMed  Google Scholar 

  19. Schwarz F, Arweiler N, Georg T, Reich E. Desensitizing effects of an Er:YAG laser on hypersensitive dentine. J Clin Periodontol. 2002;29(3):211–5.

    Article  PubMed  Google Scholar 

  20. Aranha AC, Domingues FB, Franco VO, Gutknecht N, Eduardo CP. Effects of Er:YAG and Nd:YAG lasers on dentin permeability in root surfaces: a preliminary in vitro study. Photomed Laser Surg. 2005;23(5):504–8.

    Article  PubMed  Google Scholar 

  21. Birang R, Poursamimi J, Gutknecht N, Lampert F, Mir M. Comparative evaluation of the effects of Nd:YAG and Er:YAG laser in dentin hypersensitivity treatment. Lasers Med Sci. 2007;22(1):21–4. Epub 2006 Nov 18.

    Article  PubMed  Google Scholar 

  22. Ehlers V, Ernst CP, Reich M, Kämmerer P, Willershausen B. Clinical comparison of gluma and Er:YAG laser treatment of cervically exposed hypersensitive dentin. Am J Dent. 2012;25(3):131–5.

    PubMed  Google Scholar 

  23. Kara C, Orbak R. Comparative evaluation of Nd:YAG laser and fluoride varnish for the treatment of dentinal hypersensitivity. J Endod. 2009;35(7):971–4.

    Article  PubMed  Google Scholar 

  24. Bjørndal L, Larsen T, Thylstrup A. A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals. Caries Res. 1997;31(6):411–7.

    Article  PubMed  Google Scholar 

  25. Hess W. Preservation of the pulpa. Indirect and direct pulpa capping and vital amputation. SSO Schweiz Monatsschr Zahnheilkd. 1951;61(7):666–7.

    PubMed  Google Scholar 

  26. Magnusson BO, Sundell SO. Stepwise excavation of deep carious lesions in primary molars. J Int Assoc Dent Child. 1977;8(2):36–40.

    PubMed  Google Scholar 

  27. Ingle JI. Endodontics. 3rd ed. Philadelphia: Lea & Febiger; 1985. p. 782–809.

    Google Scholar 

  28. Ricketts DN, Pitts NB. Novel operative treatment options. Monogr Oral Sci. 2009;21:174–87. doi:10.1159/000224222. Epub 2009 Jun 3.

    Article  PubMed  Google Scholar 

  29. Bjørndal L. Indirect pulp therapy and stepwise excavation. J Endod. 2008;34(7 Suppl):S29–33.

    Article  PubMed  Google Scholar 

  30. Opal S, Garg S, Dhindsa A, Taluja T. Minimally invasive clinical approach in indirect pulp therapy and healing of deep carious lesions. J Clin Pediatr Dent. 2014;38(3):185–92.

    Article  PubMed  Google Scholar 

  31. Bjørndal L, Thylstrup A. A practice-based study on stepwise excavation of deep carious lesions in permanent teeth: a 1-year follow-up study. Community Dent Oral Epidemiol. 1998;26(2):122–8.

    Article  PubMed  Google Scholar 

  32. Leksell E, Ridell K, Cvek M, Mejàre I. Pulp exposure after stepwise versus direct complete excavation of deep carious lesions in young posterior permanent teeth. Endod Dent Traumatol. 1996;12(4):192–6.

    Article  PubMed  Google Scholar 

  33. Heinrich R, Kneist S. Microbiological-histological controlled treatment study for evaluation of efficacy of one step and stepwise excavation of deep carious lesions. Stomatol DDR. 1988;38(10):693–8. German.

    PubMed  Google Scholar 

  34. Ricketts D. Management of the deep carious lesion and the vital pulp dentine complex. Br Dent J. 2001;191(11):606–10.

    PubMed  Google Scholar 

  35. Ricketts D, Lamont T, Innes NP, Kidd E, Clarkson JE. Operative caries management in adults and children. Cochrane Database Syst Rev. 2013;(3):CD003808. doi:10.1002/14651858.CD003808.pub3.

  36. Schwendicke F, Dörfer CE, Paris S. Incomplete caries removal: a systematic review and meta-analysis. J Dent Res. 2013;92(4):306–14. Epub 2013 Feb 8.

    Article  PubMed  Google Scholar 

  37. Mattos J, Soares GM, Ribeiro AA. Current status of conservative treatment of deep carious lesions. Dent Update. 2014;41(5):452–6.

    PubMed  Google Scholar 

  38. Moritz A. Oral laser application. Berlin: Quintessence; 2006. p. 258–77.

    Google Scholar 

  39. Olivi G, Costacurta M, Perugia C, Docimo R. Il laser erbium cromium in terapia conservativa. Dent Cadmos. 2007;7:91–8.

    Google Scholar 

  40. Olivi G, Bartolino M, Costacurta M, Docimo R. Applicazioni del laser Er, Cr:YSGG in odontoiatria infantile. Dentista Moderno. 2007;2:62–74.

    Google Scholar 

  41. Hibst R, Stock K, Gall R, Keller U. Controlled tooth surface heating and sterilization by Er:YAG laser radiation. Proc SPIE. 1996;2922:119–61.

    Article  Google Scholar 

  42. Franzen R, Esteves-Oliveira M, Meister J, Wallerang A, Vanweersch L, Lampert F, Gutknecht N.Decontamination of deep dentin by means of erbium, chromium:yttrium-scandium-gallium-garnet laser irradiation. Lasers Med Sci. 2009;24(1):75–80. Epub 2007 Nov 20.

    Article  PubMed  Google Scholar 

  43. Cohen S, Burns RC. Pathways of the pulp. 3rd ed. St Louis: Mosby; 1984. p. 501–6, 756–66.

    Google Scholar 

  44. Cvek MA. Clinical report on partial pulpotomy and capping with calcium hydroxide in permanent incisors with complicated crown fracture. Endod. 1978;4:232–7.

    Article  Google Scholar 

  45. Clement AW, Willemsen WL, Bronkhorst EM. Success of direct pulp capping after caries excavations. Ned Tijdschr Tandheelkd. 2000;107(6):230–2.

    PubMed  Google Scholar 

  46. Aushill TM, Arweiler NB, Hellwig E, Zamani-Alaei A, Sculean A. Success rate of direct pulp capping with calcium hydroxide. Schweiz Monatsschr Zahnmed. 2003;113(9):946–52.

    Google Scholar 

  47. Langeland K. Management of the inflamed pulp associated with deep carious lesion. J Endod. 1981;7(4):169–81. Ward J. Vital pulp therapy in cariously exposed permanent teeth and its limitations. Aust Endod J. 2002;28(1):29–37.

    Article  PubMed  Google Scholar 

  48. Tronstad L, Mjör IA. Capping of the inflamed pulp. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1972;34(3):477–85.

    Article  Google Scholar 

  49. Al-Hiyasat AS, Barrieshi-Nusair KM, Al-Omari MA. The radiographic outcomes of direct pulp-capping procedures performed by dental students: a retrospective study. JADA. 2006;137(12):1699–705.

    PubMed  Google Scholar 

  50. Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc. 2008;139(3):305–15; quiz 305–15. Erratum in J Am Dent Assoc. 2008 May;139(5):541.

    Article  PubMed  Google Scholar 

  51. Hørsted P, Søndergaard B, Thylstrup A, El Attar K, Fejerskov O. A retrospective study of direct pulp capping with calcium hydroxide com- pounds. Endod Dent Traumatol. 1985;1(1):29–34.

    Article  PubMed  Google Scholar 

  52. Matsuo T, Nakanishi T, Shimizu H, Ebisu S. A clinical study of direct pulp capping applied to carious-exposed pulps. J Endod. 1996;22(10):551–6.

    Article  PubMed  Google Scholar 

  53. Roeykens H, Van Maele G, Martens L, De Moor R. A two-probe laser Doppler flowmetry assessment as an exclusive diagnostic device in a long-term follow-up of traumatised teeth: a case report. Dent Traumatol. 2002;18(2):86–91.

    Article  PubMed  Google Scholar 

  54. Roeykens H, Van Maele G, Martens L, De Moor R. Evaluation of pulpal blood flow by laser doppler flowmetry as a test of tooth vitality in long-term follow-up: case report. Rev Belge Med Dent (1984). 2004;59(2):121–9, [Article in French].

    Google Scholar 

  55. Miron MI, Dodenciu D, Calniceanu M, Filip LM, Todea DC. Optimization of the laser Doppler signal acquisition timing for pulp vitality evaluation. Timisoara Med J. 2010;4:44–9.

    Google Scholar 

  56. Moritz A, Schoop U, Goharkhay K, Sperr W. Advantages of a pulsed CO2 laser in direct pulp capping: Long term in vivo study. Lasers Surg Med. 1998;22:288–93.

    Article  PubMed  Google Scholar 

  57. Moritz A, Schoop U, Goharkhay K, Sperr W. The CO2 laser as an aid in direct pulp capping. J Endod. 1998;24:248–51.

    Article  PubMed  Google Scholar 

  58. Santucci PJ. Dycal versus Nd:YAG, laser and Vitrebond for direct pulp capping in permanent teeth. J Clin Laser Med Surg. 1999;17:69–75.

    PubMed  Google Scholar 

  59. Todea C, Kerezsi C, Balabuc C, Calniceanu M, Filip L. Pulp cap-ping—from conventional to laser-assisted therapy (I). J Oral Laser Appl. 2008;8:71–82.

    Google Scholar 

  60. Todea C, Kerezsi C, Balabuc C, Calniceanu M, Filip L. Pulp cap-ping—from conventional to laser-assisted therapy (II). J Oral Laser Appl. 2008;8:147–55.

    Google Scholar 

  61. Nammour S, Tielemans M, Heysselaer D, Pilipili C, De Moor R, Nyssen-Behets C. Comparative study on dogs between CO2 laser and conventional technique in direct pulp capping. Rev Belge Med Dent (1984). 2009;64(2):81–6. [Article in French].

    Google Scholar 

  62. Hasheminia SM, Feizi G, Razavi SM, Feizianfard M, Gutknecht N, Mir M. A comparative study of three treatment methods of direct pulp capping in canine teeth of cats: a histologic evaluation. Lasers Med Sci. 2010;25(1):9–15. doi:10.1007/s10103-008-0584-9. Epub 2008 Jul 26.

    Article  PubMed  Google Scholar 

  63. Cannon M, Wagner C, Thobaben JZ, Jurado R, Solt D. Early response of mechanically exposed dental pulps of swine to antibacterial-hemostatic agents or diode laser irradiation. J Clin Pediatr Dent. 2011;35(3):271–6.

    Article  PubMed  Google Scholar 

  64. Yazdanfar I, Gutknecht N, Franzen R. Effects of diode laser on direct pulp capping treatment : a pilot study. Lasers Med Sci. 2015;30(4):1237–43.

    Article  PubMed  Google Scholar 

  65. Glockner K, Rumpler J, Ebeleseder K, Stadtler P. Intrapulpal temperature during preparation with the Er:YAG laser compared to the conventional burr: an in vitro study. J Clin Laser Med Surg. 1998; 16:153–7.

    PubMed  Google Scholar 

  66. Rizoiu I, Kohanghadosh F, Kimmel AI, Eversole LR. Pulpal thermal responses to an erbium, chromium:YSGG pulsed hydrokinetic system. Oral Surg Oral Med Pathol Oral Radiol Endod. 1998;86:220–3.

    Article  Google Scholar 

  67. Dammaschke T. The history of direct pulp capping. J Hist Dent. 2008;56:9–23.

    PubMed  Google Scholar 

  68. Baume LJ, Holz J. Long term clinical assessment of direct pulp capping. Int Dent J. 1981;31(4):251–60.

    PubMed  Google Scholar 

  69. Schröder U. Effect of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res. 1985;64(Special number):541–8.

    PubMed  Google Scholar 

  70. Cox CF, Sübay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent. 1996;21(1):4–11.

    PubMed  Google Scholar 

  71. Andelin WE, Shabahang S, Wright K, Torabinejad M. Identification of hard tissue after experimental pulp capping using dentin sialo-protein (DSP) as a marker. J Endod. 2003;29(10):646–50.

    Article  PubMed  Google Scholar 

  72. Goracci G, Mori G. Scanning electron microscopic evaluation of resin-dentin and calcium hydroxide-dentin interface with resin composite restorations. Quintessence Int. 1996;27(2):129–35.

    PubMed  Google Scholar 

  73. Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am J Dent. 1998;11(Special number):S55–63.

    PubMed  Google Scholar 

  74. Hebling J, Giro EM, Costa CA. Biocompatibility of an adhesive system applied to exposed human dental pulp. J Endod. 1999;25(10):676–82.

    Article  PubMed  Google Scholar 

  75. Accorinte Mde L, Loguericio AD, Reis A, Muench A, de Araújo VC. Adverse effects of human pulps after direct pulp capping with different components from a total-etch, three-step adhesive system. Dent Mater. 2005;21(7):599–607.

    Article  PubMed  Google Scholar 

  76. Tarmin B, Hafez AA, Cox CF. Pulpal response to a resin-modified glass-ionomer material on nonexposed and exposed monkey pulps. Quintessence Int. 1998;29(8):535–42.

    Google Scholar 

  77. do Nascimento AB, Fontana UF, Teixeira HM, Costa CA. Biocompatibility of a resin-modified glass-ionomer cement applied as pulp capping in human teeth. Am J Dent. 2000;13(1):28–34.

    PubMed  Google Scholar 

  78. Camilleri J, Pitt Ford TR. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J. 2006;39(10):747–54.

    Article  PubMed  Google Scholar 

  79. Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc. 1996;127:1491–4.

    Article  PubMed  Google Scholar 

  80. Accorinte Mde L, Holland R, Reis A, et al. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod. 2008;34:1–6.

    Article  PubMed  Google Scholar 

  81. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physiochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005;31(2):97–100.

    Article  PubMed  Google Scholar 

  82. Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod. 1998;24:543–7.

    Article  PubMed  Google Scholar 

  83. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25:197–205.

    Article  PubMed  Google Scholar 

  84. Poggio C, Ceci M, Beltrami R, Dagna A, Colombo M, Chiesa M. Biocompatibility of a new pulp capping cement. Ann Stomatol (Roma). 2014;5(2):69–76. eCollection 2014.

    Google Scholar 

  85. De Rossi A, Silva LA, Gatón-Hernández P, Sousa-Neto MD, Nelson-Filho P, Silva RA, de Queiroz AM. Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J Endod. 2014;40(9):1362–9. doi:10.1016/j.joen.2014.02.006. Epub 2014 Mar 18.

    Article  PubMed  Google Scholar 

  86. Laurent P, Camps J, About I. Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45(5):439–48. doi:10.1111/j.1365-2591.2011.01995.x. Epub 2011 Dec 22.

    Article  PubMed  Google Scholar 

  87. Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008;24(11):1486–94. Epub 2008 Apr 29.

    Article  PubMed  Google Scholar 

  88. Cantek NK, Avc S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®). J Appl Oral Sci. 2014;22(4):302–6.

    Google Scholar 

  89. Natale LC, Rodrigues MC, Xavier TA, Simões A, de Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J. 2015;48(1):89–94. doi:10.1111/iej.12281.

    Article  PubMed  Google Scholar 

  90. Suzuki M, Katsumi A, Watanabe R, Shirono M, Katoh Y. Effects of an experimentally developed adhesive resin system and CO2 laser irradiation on direct pulp capping. Oper Dent. 2005;30(6):702–18.

    PubMed  Google Scholar 

  91. Suzuki M, Ogisu T, Kato C, Shinkai K, Katoh Y. Effect of CO2 laser irradiation on wound healing of exposed rat pulp. Odontology. 2011;99(1):34–44. doi:10.1007/s10266-010-0140-5. Epub 2011 Jan 27.

    Article  PubMed  Google Scholar 

  92. Jayawardena JA, Kato J, Moriya K, Takagi Y. Pulpal response to exposure with Er:YAG laser. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:222–9.

    Article  PubMed  Google Scholar 

  93. Huth KC, Paschos E, Hajek-Al-Khatar N, et al. Effectiveness of 4 pulpotomy techniques—randomized controlled trial. J Dent Res. 2005;84:1144–8.

    Article  PubMed  Google Scholar 

  94. Qudeimat MA, Barrieshi-Nusair KM, Owais AI. Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur Arch Paediatr Dent. 2007;8:99–104.

    Article  PubMed  Google Scholar 

  95. Fekrazad R, Seraj B, Ghadimi S, Tamiz P, Mottahary P, Dehghan MM. The effect of low-level laser therapy (810 nm) on root development of immature permanent teeth in dogs. Lasers Med Sci. 2015;30(4):1251–7.

    Article  PubMed  Google Scholar 

  96. Mathur VP, Dhillon JK, Kalra G. A new approach to facilitate apexogenesis using soft tissue diode laser. Contemp Clin Dent. 2014;5(1):106–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Olivi MD, DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olivi, G., Genovese, M.D. (2015). Laser Applications for Vital Pulp Therapy. In: Olivi, G., Olivi, M. (eds) Lasers in Restorative Dentistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47317-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47317-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47316-0

  • Online ISBN: 978-3-662-47317-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics