Skip to main content

Adhesion and Erbium-Lased Enamel and Dentin

  • Chapter
Lasers in Restorative Dentistry

Abstract

The quality of bonding to the enamel and dentin is of utmost importance for the long life of adhesive filling materials. At present, adhesive systems have evolved in a positive way. Much is the result of a better understanding of the interaction between adhesive system and substrate. Both the dentin and enamel have different surface characteristics after laser preparation with erbium lasers as compared to conventionally bur-cut surfaces. For some, the characteristic irregularity and retentiveness of lased surfaces permit to adhere without etching. In the mean time, investigations have demonstrated that it is better to etch the lased surface (both the enamel and dentin) before bonding with non-self-etching systems. Also here, the original ‘gold standard’, i.e. a three-step etch-and-rinse system, results in clinically acceptable bond strengths. Furthermore, two-step ‘mild’ self-etch adhesives containing 10-MDP used with enamel etching and without dentin etching appear to perform at least equally well. As the quality of the adhesion is also influenced by the substrate, it has to be emphasised that it is recommended not to rely on enamel laser conditioning (previously called laser etching) and to finish the dentin at low fluency before adhesion. At present, there is insufficient information to take a position for glass ionomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black GV. A work op operative dentistry in two volumes. Chicago: Medico-Dental Publishing Company; 1908.

    Google Scholar 

  2. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003;28:215–35.

    PubMed  Google Scholar 

  3. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34:849–53.

    Article  PubMed  Google Scholar 

  4. Bowen RL. Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc. 1963;66:57–64.

    Article  PubMed  Google Scholar 

  5. Peters MC, McLean ME. Minimally invasive operative care. II. Contemporary techniques and materials: an overview. J Adhes Dent. 2001;3:17–31.

    PubMed  Google Scholar 

  6. Peters MC, McLean ME. Minimally invasive operative care. I. Minimal intervention and concepts for minimally invasive cavity preparations. J Adhes Dent. 2001;3:7–16.

    PubMed  Google Scholar 

  7. Stern RH, Sognnaes RF. Laser beam effect on dental hard tissues. J Dent Res. 1964;43:873.

    Google Scholar 

  8. De Moor RJG, Delmé KIM. Laser-assisted cavity preparation and adhesion to Erbium-lased tooth structure: Part 2. Present-day adhesion to Erbium-lased tooth structure in permanent teeth. J Adhes Dent. 2010;12:91–102.

    PubMed  Google Scholar 

  9. Frentzen M, Koort HJ, Kermani O, Dardenne MU. Preparation of hard tooth structure with Excimer lasers. In vitro study. Dtsch Zahnarztl Z. 1989;44:431–5.

    PubMed  Google Scholar 

  10. Liesenhoff T, Bende T, Lenz H, Seiler T. Removal of hard tooth substance with Excimer lasers. Dtsch Zahnarztl Z. 1989;44(6):426–30.

    PubMed  Google Scholar 

  11. Keller U, Hibst R. Experimental studies of the application of the Er:YAG laser on dental hard substances: II. Light microscopic and SEM investigations. Lasers Surg Med. 1989;9:345–51.

    Article  PubMed  Google Scholar 

  12. Hibst R, Keller U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med. 1989;9:338–44.

    Article  PubMed  Google Scholar 

  13. Packham DE. Handbook of adhesion. Essex: Longham Scientific & Technical; 1992. p. 18–20.

    Google Scholar 

  14. von Fraunhofer JA. Adhesion and cohesion. Int J Dent. 2012;2012:951324.

    Google Scholar 

  15. Förch R. 1.3. Tutorial review: surface modification and adhesion. In: Förch R, Schönherr H, Tobias A, Jenkins ATA, editors. Surface design: applications in bioscience and nanotechnology. Chichester: Wiley; 2009. p. 55–80.

    Chapter  Google Scholar 

  16. Van Meerbeek B, Van Landuyt K, De Munck J, Inoue S, Yoshida Y, Pedigao J, Lambrechts P, Peumans M. Chapter 8 Bonding to enamel and dentin. In: Summitt JB, Robbins JW, Hilton TJ, Schwartz RS, editors. Fundamentals of operative dentistry. A contemporary approach. Berlin: Quintessence books; 2006. p. 183–260.

    Google Scholar 

  17. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27(1):17–28.

    Article  PubMed  Google Scholar 

  18. Van Meerbeek B, Vargas M, Inoue S, Yoshida Y, Peumans M, Lambrechts P, Vanherle G. Adhesives and cements to promote preservation dentistry. Oper Dent. 2001;Suppl 6:119–44.

    Google Scholar 

  19. Peumans M, De Munck J, Mine A, Van Meerbeek B. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent Mater. 2014;30:1089–103.

    Article  PubMed  Google Scholar 

  20. Fusayama T, Nakamura M, Kurosaki N, Iwaku M. Non-pressure adhesion of a new adhesive restorative resin. J Dent Res. 1979;58:1364–70.

    Article  PubMed  Google Scholar 

  21. Alexieva CC. Character of the hard tooth tissue-polymer bond. II. Study of the interaction of the human tooth enamel and dentin with N-phenylglycine-glycidyl methacrylate adduct. J Dent Res. 1979;58:1884–6.

    Article  PubMed  Google Scholar 

  22. Bowen RL, Marjenhoff WA. Development of an adhesive bonding system. Oper Dent. 1992;suppl 5:75–80.

    PubMed  Google Scholar 

  23. Causton BE. Improved bonding of composite restorative to dentine. Br Dent J. 1984;156:93–5.

    Article  PubMed  Google Scholar 

  24. Retief DH, Denys FR. Adhesion to enamel and dentin. Am J Dent. 1989;2:133–44.

    PubMed  Google Scholar 

  25. Asmussen E, Munksgaard EC. Bonding of restorative materials to dentine: status of dentine adhesives and impact on cavity design and filling techniques. Int Dent J. 1988;38:97–104.

    PubMed  Google Scholar 

  26. Eick JD, Cobb CM, Chappell RP, Spencer P, Robinson SJ. The dentinal surface: its influence on dentinal adhesion. Part I. Quintessence Int. 1991;22:967–77.

    PubMed  Google Scholar 

  27. Asmussen E, Hanssen EK. Dentine bonding agents. In: Vanherle G, degrange M, Willems G, editors. State of the art on direct posterior filling materials and dentine bonding. Proceedings of the international symposium Euro Disney. 2nd ed. Leuven: Vanderpoorten; 1994. p. 33.

    Google Scholar 

  28. Baier RE. Principles of adhesion. Oper Dent. 1992;5(suppl):50–61.

    Google Scholar 

  29. Eliades GC, Vougiouklakis GJ. 31P-NMR study of P-based dental adhesives and electron probe microanalysis of simulated interfaces with dentin. Dent Mater. 1989;5:101–8.

    Article  PubMed  Google Scholar 

  30. Huang GT, Söderholm K-JM. In vitro investigation of shear bond strength of a phosphate based dentinal bonding agent. Scand J Dent Res. 1989;97:84–92.

    PubMed  Google Scholar 

  31. Albers HF. Dentin-resin bonding. ADEPT Rep. 1990;1:33–42.

    Google Scholar 

  32. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res. 1982;16:265–73.

    Article  PubMed  Google Scholar 

  33. Van Dijken JWV, Horstedt P. In vivo adaptation of restorative materials to dentin. J Prosthet Dent. 1986;56:677–81.

    Article  PubMed  Google Scholar 

  34. Perdiago J, Swift Jr EJ. Chapter 5 Fundamental concepts of enamel and dentin adhesion. In: Roberson TM, Heymann HO, Swift Jr EJ, editors. Sturdevant’s art and science of operative dentistry. St. Louis: Mosby Elsevier; 2006. p. 243–79.

    Google Scholar 

  35. Eliades G. Clinical relevance of the formulation and testing of dentine bonding systems. J Dent. 1994;22:73–81.

    Article  PubMed  Google Scholar 

  36. Erickson RL. Surface interactions of dentin adhesive materials. Oper Dent. 1992;5(suppl):81–94.

    PubMed  Google Scholar 

  37. Inoue S, Van Meerbeek B, Vargas M, Yoshida Y, Lambrechts P, vanherle G. Adhesion mechanism of self-etching adhesives. In: Tagami J, Toledano M, Prati C, editors. Third international Kuraray symposium of Advanced Dentistry; 1999 Dec 3–4; Granada. Como: Graphice Erredue; 2000. p. 131–48.

    Google Scholar 

  38. Toledano M, Osorio R, de Leonardi G, Rosales-Leal JL, Ceballos L, Cabrerizo-Vilchez MA. Influence of self-etching primer on the resin adhesion to enamel and dentine. Am J Dent. 2001;14:205–10.

    PubMed  Google Scholar 

  39. Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc. 2003;69:726–31.

    PubMed  Google Scholar 

  40. Tay FR, Pashley DH. Water-treeing – a potential mechanism for degradation of dentinal adhesives. Am J Dent. 2003;16:6–12.

    PubMed  Google Scholar 

  41. Van Landuyt K, De Munck J, Snauwaert J, Coutinho E, Poitevin A, Yoshida Y, Inoue S, Peumans M, Suzuki K, Lambrechts P, Van Meerbeek B. Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res. 2005;84:183–8.

    Article  PubMed  Google Scholar 

  42. Perdigao J. dentin bonding – questions for the new millennium. J Adhes Dent. 1999;1:191–209.

    PubMed  Google Scholar 

  43. Tay FR, Pashley DH, Peters MC. Adhesive permeability affects composite coupling to dentin treated with a self-etch adhesive. Oper Dent. 2003;28:610–21.

    PubMed  Google Scholar 

  44. Tay FR, Pashley DH. Aggressiveness of contemporary self-etching adhesives. Part I. depth of penetration beyond dentin smear layers. Dent Mater. 2001;17:296–308.

    Article  PubMed  Google Scholar 

  45. Tay FR, Pashley DH, Suh BI, Carvalho RM, Itthagarun A. Single – step adhesives are permeable membranes. J Dent. 2002;30:371–82.

    Article  PubMed  Google Scholar 

  46. Chan KM, Tay FR, King NM, Imazato S, Pashley DH. Bonding of mild self-etching primers/adhesives to dentin with thick smear layers. Am J Dent. 2003;16:340–6.

    PubMed  Google Scholar 

  47. Perdigão J, Gomes G, Gondo R, Fundingsland JW. In vitro bonding performance of all-in-one adhesives. Part I–microtensile bond strengths. J Adhes Dent. 2006;8:367–73.

    PubMed  Google Scholar 

  48. Reis A, Loguercio AD, Manso AP, Grande RH, Schiltz-Taing M, Suh B, Chen L, Carvalho RM. Microtensile bond strengths for six 2-step and two 1-step self-etch adhesive systems to enamel and dentin. Am J Dent. 2013;26:44–50.

    PubMed  Google Scholar 

  49. Van Meerbeek B, Yoshibar K. Clinical recipe for durable dental bonding: why and how? J Adhes Dent. 2014;16:94.

    PubMed  Google Scholar 

  50. Yoshida Y, Magakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H, Inoue S, Tagawa Y, Suzuki K, De Munck J, Van Meerbeek B. Comparative study on adhesive performance of functional monomers. J Dent Res. 2004;83:454–8.

    Article  PubMed  Google Scholar 

  51. Yoshihara K, Yoshida Y, Hayakawa S, Nagaoka N, Kamenoue S, Okihara T, Ogawa T, Nakamura M, Osaka A, Van Meerbeek B. Novel fluoro-carbon functional monomer for dental bonding. J Dent Res. 2014;93:189–94.

    Article  PubMed  Google Scholar 

  52. Delmé KIM, De Moor RJG. A scanning electron microscopic comparison of different caries removal techniques for root caries treatment. J Oral Laser Appl. 2003;3:235–42.

    Google Scholar 

  53. Delmé KIM, Deman PJ, De Bruyne MAA, De Moor RJG. Influence of different Er:YAG laser energies and frequencies on the surface morphology of dentin and enamel. J Oral Laser Appl. 2006;6:43–52.

    Google Scholar 

  54. Meister J, Franzen R, Forner K, Grebe H, Stanzel S, Lampert F, Apel C. Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers. J Biomed Opt. 2006;11:1–7.

    Article  Google Scholar 

  55. Miserendino LJ, Abt E, Widgor H, Miserendino CA. Evaluation of thermal cooling mechanisms for laser application to teeth. Lasers Surg Med. 1993;13:83–8.

    Article  PubMed  Google Scholar 

  56. Atrill DC, Farrar SR, Blinkhorn AS, Davies RM, Dickinson MR, King TA. The effects of a surface water film on the interaction of Er:YAG radiation with dental hard tissues in vitro. SPIE Proc 11/1996;2922:220–27.

    Google Scholar 

  57. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103:577–644.

    Article  PubMed  Google Scholar 

  58. Colucci V, Amaral FLB, Lucisano MP, Palma-Dibb RG, Pécora JD, Corona SAM. Influence of water flow rate on shear bond strength of composite resin to Er:YAG cavity preparation. Am J Dent. 2008;21:124–8.

    PubMed  Google Scholar 

  59. Colucci V, Amaral FLB, Palma-Dibb RG, Pécora JD, Corona SAM. Effects of water flow on ablation rate and morphological changes in human enamel and dentine after Er:YAG laser irradiation. Am J Dent. 2012;25:332–6.

    PubMed  Google Scholar 

  60. Kim ME, Jeoung DJ, Kim KS. Effects of water flow on dental hard tissue ablation using Er:YAG laser. J Clin Laser Med Surg. 2003;21:139–44.

    Article  PubMed  Google Scholar 

  61. Hossain M, Nakamura Y, Yamada Y, Kimura Y, Nakamura G, Matsumoto K. Ablation depths and morphological changes in human enamel and dentine after Er:YAG laser irradiation with or without water mist. J Clin Laser Med Surg. 1996;17:105–9.

    Google Scholar 

  62. Lukac M, Marincek M, Poberaj G. Interaction thresholds in Er:YAG laser ablation of organic tissue. Proc SPIE. 1996;2623:129–38.

    Article  Google Scholar 

  63. Colucci V, do Amaral FL, Pécora JD, Palma-Dibb RG, Corona SA. Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues. Lasers Med Sci. 2009;24:811–8.

    Article  PubMed  Google Scholar 

  64. Kinney JH, Haupt DL, Balooch M, White JM, Bell WL, Marshall SJ, Marshall Jr GW. The threshold effects of Nd and Ho:YAG laser-induced surface modification on demineralisation of dentin surfaces. J Dent Res. 1996;75:1388–95.

    Article  PubMed  Google Scholar 

  65. Hadley J, Young DA, Eversole LR, Gornbein JA. A laser-powered hydrokinetic system for caries removal and cavity preparation. J Am Dent Assoc. 2000;131:777–85.

    Article  PubMed  Google Scholar 

  66. Featherstone JDB, Fried D, McCormack SM, Seka W. Effect of pulse duration and repetition rate on CO2 laser inhibition of caries progression. In: Wigdor HA, Featherstone JDB, White JM, Neev J, editors. Lasers in dentistry II. San Jose: SPIE; 1996. p. 79–87.

    Chapter  Google Scholar 

  67. Kimura Y, Wilder-Smith P, Arrastia-Jitosho AM, Liaw LH, Matsumoto K, Berns MW. Effects of nanosecond pulsed Nd:YAG laser irradiation on dentin resistance to artificial caries-like lesions. Lasers Surg Med. 1997;20:15–21.

    Article  PubMed  Google Scholar 

  68. Hibst R. Lasers for caries removal and cavity preparation: state of the art and future directions. J Oral Laser Appl. 2002;2:203–12.

    Google Scholar 

  69. Gow AM, McDonald AV, Pearson GJ, Setchell DJ. An in vitro investigation of the temperature rises produced in dentine by Nd:YAG laser light with and without water cooling. Eur J Prosthodont Restor Dent. 1999;7:71–7.

    PubMed  Google Scholar 

  70. Apel C, Birker L, Meister J, Weiss C, Gutknecht N. The caries-preventive potential of subablative Er:YAG and Er:YSGG laser radiation in an intraoral model: a pilot study. Photomed Laser Surg. 2004;22:312–7.

    Article  PubMed  Google Scholar 

  71. Arcoria CJ, Lippas MG, Vitasek BA. Enamel surface roughness analysis after laser ablation and acid-etching. J Oral Rehabil. 1993;20:213–24.

    Article  PubMed  Google Scholar 

  72. Arcoria CJ, Steele RE, Wagner MJ, Judy MM, Matthews JL, Hults DF. Enamel surface roughness and dental pulp response to coaxial carbon dioxide neodymium:YAG laser irradiation. J Dent Res. 1991;19:85–91.

    Article  Google Scholar 

  73. Belikov AV, Erofeev AV, Shumilin VV, Tkachuk AM. Comparative study of the 3 micron laser action on different hard tissue samples using free running pulsed Er-doped YAG, YSGG, YAP and YLF lasers. SPIE. 1993;2080:60–7.

    Google Scholar 

  74. Jayawardena JA, Kato J, Moriya K, Takagi Y. Pulpal response to exposure with Er:YAG laser. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:222–9.

    Article  PubMed  Google Scholar 

  75. Brooks SG, Ashley S, Fisher J, Davies GA, Griffiths J, Kester RC, Rees MR. Exogenous chromophores for the argon and Nd:YAG lasers: a potential application to laser tissue interactions. Lasers Surg Med. 1992;12:294–302.

    Article  PubMed  Google Scholar 

  76. Maung NL, Wohland T, Hsu CY. Enamel diffusion modulated by Er:YAG laser (Part 1) FRAP. J Dent. 2007;35:787–93.

    Article  PubMed  Google Scholar 

  77. Burkes EJ, Hoke J, Gomes E, Wolbarsht M. Wet versus dry enamel ablation by Er:YAG laser. J Prosthet Dent. 1992;67:847–51.

    Article  PubMed  Google Scholar 

  78. Cox CJ, Pearson GJ, Palmer G. Preliminary in vitro investigation of the effects of pulsed Nd:YAG laser radiation on enamel and dentine. Biomaterials. 1994;15:45–51.

    Article  Google Scholar 

  79. Glockner K, Rumpler J, Ebeleseder K, Stadtler P. Intrapulpal temperature during preparation with the Er:YAG laser compared to the conventional bur: an in vitro study. J Clin Laser Med Surg. 1998;16:53–157.

    Google Scholar 

  80. Ramos RP, Chimelloe DT, Chinelatti MA, Nonaka T, Pecora JD, Palma Dibb RG. Effect of Er:YAG laser on bond strength to dentin of a self-etching primer and two single-bottle adhesive systems. Lasers Surg Med. 2002;31:164–70.

    Article  PubMed  Google Scholar 

  81. Corona SA, Souza-Gabriel AE, Chinelatti MA, Pecora JD, Borsatto MC, Palma-Dibb RG. Effect of energy and pulse repetition rate of Er:YAG laser on dentin ablation ability and morphological analysis of the laser-irradiated substrate. Photomed Laser Surg. 2007;25:26–33.

    Article  PubMed  Google Scholar 

  82. Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J. Current concepts on bonding effectiveness and stability in adhesive dentistry. Aust Dent J. 2011;56(1 Suppl):31–44.

    Article  PubMed  Google Scholar 

  83. Cardoso MV, De Munck J, Coutinho E, Ermis RB, Van Landuyt K, de Carvalho RC, Van Meerbeek B. Influence of Er, Cr:YSGG laser treatment on microtensile bond strength of adhesives to enamel. Oper Dent. 2008;33:448–55.

    Article  PubMed  Google Scholar 

  84. Delmé KI, Cardoso MV, Mine A, De Moor RJ, Van Meerbeek B. Transmission electron microscopic examination of the interface between a resin-modified glass-ionomer and Er:YAG laser-irradiated dentin. Photomed Laser Surg. 2009;27:317–23.

    Article  PubMed  Google Scholar 

  85. Gurgan S, Kiremitci A, Cakir FY, Yazici AE, Gorucu J, Gutknecht N. Shear bond strength of composite bonded erbium:yttrium-aluminum-garnet laser-prepared dentin. Lasers Med Sci. 2009;24:117–22.

    Article  PubMed  Google Scholar 

  86. Ramos AC, Esteves-Oliveira M, Arana-Chavez VE, de Paula EC. Adhesives bonded to erbium:yttrium-aluminum-garnet laser-irradiated dentin: transmission electron microscopy, scanning electron microscopy and tensile bond strength analyses. Lasers Med Sci. 2010;25:181–9.

    Article  PubMed  Google Scholar 

  87. Firat E, Gurgan S, Gutknecht N. Microtensile bond strength of an etch-and-rinse adhesive to enamel and dentin after Er:YAG laser pretreatment with different pulse durations. Lasers Med Sci. 2012;27:15–21.

    Article  PubMed  Google Scholar 

  88. Barbara A, Dukic W, Chieffi N, Ferrari M, Anic I, Miletic I. Influence of different pulse durations of Er:YAG laser based on variable square pulse technology on microtensile bond strength of a self-etch adhesive to dentin. Photomed Laser Surg. 2013;31:116–24.

    Article  Google Scholar 

  89. de Oliveira MT, Reis AF, Arrais CA, Cavalcanti AN, Aranha AC, de Paula EC, Giannini M. Analysis of the interfacial micromorphology and bond strength of adhesive systems to Er:YAG laser-irradiated dentin. Lasers Med Sci. 2013;28(4):1069–76.

    Article  PubMed  Google Scholar 

  90. Bahrami B, Sakari N, Thielemans M, Heysselaer D, Lamard L, Peremans A, Nyssen-Behets C, Nammour S. Effect of low fluency dentin conditioning on tensile bond strength of composite bonded to Er:YAG laser-prepared dentin: a preliminary study. Lasers Med Sci. 2011;26:187–91.

    Article  PubMed  Google Scholar 

  91. Shahabi S, Chiniforush N, Bahramian H, Monzavi A, Baghalian A, Kharazifard MJ. The effect of erbium family laser on tensile bond strength of composite to dentin in comparison with conventional method. Lasers Med Sci. 2013;28:139–42.

    Article  PubMed  Google Scholar 

  92. Ferreira LS, Apel C, Francci C, Simoes A, Eduardo CP, Gutknecht N. Influence of etching time on bond strength in dentin irradiated with erbium lasers. Lasers Med Sci. 2010;25:849–54.

    Article  PubMed  Google Scholar 

  93. Carvalho AO, Reis AF, de Oliveira MT, de Freitas PC, Aranha AC, Eduardo Cde P, Giannini M. Bond strength of adhesive systems to Er, Cr:YSGG laser-irradiated dentin. Photomed Laser Surg. 2011;11:747–52.

    Article  Google Scholar 

  94. Shirani F, Birang R, Malekipur MR, Zeilabi A, Shahmoradi M, Kazemi S, Khazaei S. Adhesion to Er:YAG laser and bur prepared root and crown dentine. Aust Dent J. 2012;57:138–43.

    Article  PubMed  Google Scholar 

  95. Chousterman M, Heysselaer D, Dridi SM, Bayet F, Misset B, Lamard L, Peremans A, Nyssen-Behets C, Nammour S. Effect of acid etching duration on tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet laser-prepared dentine. Preliminary study. Lasers Med Sci. 2010;25:855–9.

    Article  PubMed  Google Scholar 

  96. Aranha AC, De Paula Eduardo C, Gutknecht N, Marques MM, Ramalho KM, Apel C. Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er, Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech. 2007;70:745–51.

    Article  PubMed  Google Scholar 

  97. de Oliveira MT, Arrais CA, Aranha AC, de Paula EC, Miyake K, Rueggeberg FA, Giannini M. Micromorphology of resin-dentin interfaces using one-bottle etch&rinse and self-etching adhesive systems on laser-treated dentin surfaces: a confocal laser scanning microscope analysis. Lasers Surg Med. 2010;42:662–70.

    Article  PubMed  Google Scholar 

  98. Fried D, Featherstone JDB, Visuri SR, Seka WD, Walsj JT. The caries inhibition potential of Er:YAG and Er, Cr:YSGG laser irradiation. SPIE Proc. 1996;2672:73–8.

    Article  Google Scholar 

  99. Apel C, Meister J, Schmitt N, Gräber HG, Gutknecht N. Calcium solubility of dental enamel following sub-ablative Er:YAG and Er, Cr:YSGG laser irradiation in vitro. Lasers Surg Med. 2002;30:337–41.

    Article  PubMed  Google Scholar 

  100. Liu JF, Liu Y, Stephen HC. Optimal Er:YAG laser energy for preventing enamel demineralization. J Dent Res. 2004;83:216–21.

    Article  Google Scholar 

  101. Chen ML, Ding JF, He YJ, Chen Y, Jiang QZ. Effect of pretreatment on Er:YAG laser-irradiated dentin. Lasers Med Sci. 2015;30:753–9.

    Article  PubMed  Google Scholar 

  102. Jiang Q, Chen M, Ding J. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin. Mol Biol Rep. 2013;40:7053–9.

    Article  PubMed  Google Scholar 

  103. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132:133–5.

    Article  PubMed  Google Scholar 

  104. Saito S, Tosaki S, Hirota K. Characteristics of glass-ionomer cements. In: Davidson CL, Mjör IA, editors. Advances in glass-ionomer cements. Chicago: Quintessence; 1999. p. 15–50.

    Google Scholar 

  105. Inoue S, Van Meerbeek B, Abe Y, Yoshida Y, Lambrechts P, Vanherle G, Sano H. Effect of remaining dentin thickness and the use of conditioner on micro-tensile bond strength of a glass-ionomer adhesive. Dent Mater. 2001;17:445–55.

    Article  PubMed  Google Scholar 

  106. Van Meerbeek B, Yoshida Y, Inouze S, Fukasa R, Okazaki M, Lambrechts P, Van Herle G. Interfacial characterization of resin-modified glass-ionomers to dentin. J Dent Res. 2001;80:739.

    Google Scholar 

  107. Van Meerbeek B, De Munck J, Mattar D, Van Landuyt K, Lambrechts P. Microtensile bond strengths of an etch&rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. Oper Dent. 2003;28:647–60.

    PubMed  Google Scholar 

  108. Papacchini F, Goracci C, Sadek FT, Monticelli F, Garcia-Godoy F, Ferrari M. Microtensile bond strength to ground enamel by glass-ionomers, resin-modified glass-ionomers, and resin composites used as pit and fissure sealants. J Dent. 2005;33:459–67.

    Article  PubMed  Google Scholar 

  109. Souza-Gabriel SA, Amaral FLB, Pécora JD, Palma-Dibb RG, Corona SAM. Shear bond strength of resin-modified glass ionomer cements to Er:YAG laser-treated tooth structure. Oper Dent. 2006;31(2):212–8.

    Article  PubMed  Google Scholar 

  110. Jordehi AY, Ghasemi A, Zadeh MM, Fekrazad R. Evaluation of microtensile bond strength of glass ionomer cements to dentin after conditioning with the Er, Cr:YSGG laser. Photomed Laser Surg. 2007;25:402–6.

    Article  PubMed  Google Scholar 

  111. Cardoso MV, Delmé K, Mine A, Neves Ade A, Coutinho E, de Moor RJ, Van Meerbeek B. Towards a better understanding of resin-modified glass-ionomers by bonding to differently prepared dentin. J Dent. 2010;37:921–9.

    Article  Google Scholar 

  112. Ekworapoj P, Sidhu SK, McCabe JF. Effect of surface conditioning on adhesion of glass ionomer cement to Er, Cr:YSGG laser-irradiated human dentin. Photomed Laser Surg. 2007;25:118–23.

    Article  PubMed  Google Scholar 

  113. Jafari A, Shahabi S, Chiniforush N, Shariat A. Comparison of the shear bond strength of resin modified glass ionomer to enamel in bur-prepared or lased teeth (Er:YAG). J Dent (Tehran). 2013;10:119–23.

    Google Scholar 

  114. Garbui BU, de Azevedo CS, Zezell DM, Aranha AC, Matos AB. Er, Cr:YSGG laser dentine conditioning improves adhesion of a glass ionomer cement. Photomed Laser Surg. 2013;31:453–60.

    Article  PubMed  Google Scholar 

  115. Altunsoy M, Botsali MS, Korkut E, Kucukyilmaz E, Sener Y. Effect of different surface treatments on the shear and microtensile bond strength of resin-modified glass ionomer cement to dentin. Acta Odontol Scand. 2014;72:874–9.

    Article  PubMed  Google Scholar 

  116. Markovic D, Petrovic B, Peric T, Miletic I, Andjelkovic S. The impact of fissure depth and enamel conditioning protocols on glass-ionomer and resin-based fissure sealant penetration. J Adhes Dent. 2011;13:171–8.

    PubMed  Google Scholar 

  117. Colucci V, de Araújo Loiola AB, da Motta DS, do Amaral FL, Pécora JD, Corona SA. Influence of long-term water storage and thermocycling on shear bond strength of glass-ionomer cement to Er:YAG laser-prepared dentin. J Adhes Dent. 2014;16:35–9.

    PubMed  Google Scholar 

  118. Quo BC, Drummond JL, Koerber A, Fadavi S, Punwani I. Glass ionomer microleakage from preparations by an Er:YAG laser or a high-speed handpiece. J Dent. 2002;30:141–6.

    Article  PubMed  Google Scholar 

  119. Delmé KIM, Deman PJ, Nammour S, De Moor RJG. Microleakage of class V glass ionomer restorations after conventional and Er:YAG laser preparation. Photomed Laser Surg. 2006;24:715–22.

    Article  PubMed  Google Scholar 

  120. Mello AM, Maeyer MP, Mello FA, Matos AB, Marques MM. Effects of Er:YAG laser on the sealing of glass ionomer restorations of bacterial artificial root caries. Photomed Laser Surg. 2006;24:467–73.

    Article  PubMed  Google Scholar 

  121. Delmé KIM, Deman PJ, De Bruyne MAA, De Moor RJG. Microleakage of four different restorative glass ionomer formulations in class V cavities: Er:YAG laser versus conventional preparation. Photomed Laser Surg. 2008;26:541–9.

    Article  PubMed  Google Scholar 

  122. Delmé KIM, Deman PJ, De Bruyne MAA, Nammour S, De Moor RJG. Microleakage of glass ionomer formulations after Er:YAG laser preparation. Lasers Med Sci. 2010;25:171–80.

    Article  PubMed  Google Scholar 

  123. Geraldo-Martins VR, Lepri CP, Palma-Dibb RG. Effect of different root caries treatments on the sealing ability of conventional glass ionomer cements. Lasers Med Sci. 2012;27:39–45.

    Article  PubMed  Google Scholar 

  124. Kataumi M, Nakajima M, Tamada T, Tagami J. Tensile bond strength and SEM evaluation of Er:YAG laser irradiated dentin using dentin adhesive. Dent Mater J. 1998;17:125–38.

    Article  Google Scholar 

  125. Corona SAM, Borsatto MC, Pecora JD, De Sa Rocha RAS, Ramos TS, Palma-Dibb RG. Assessing microleakage of different class V restorations after Er:YAG laser and bur preparation. J Oral Rehabil. 2003;30:1008–14.

    Article  PubMed  Google Scholar 

  126. Chinelatti MA, Ramos RP, Chimello DT, Corona SA, Pecora JD, Dibb RG. Influence of Er:YAG laser on cavity preparation and surface treatment in microleakage of composite resin restorations. Photomed Laser Surg. 2006;24:214–8.

    Article  PubMed  Google Scholar 

  127. Rossi RR, Aranha AC, Eduardo Cde P, Ferreira LS, Navarro RS, Zezell DM. Microleakage of glass ionomer restoration in cavities prepared by Er, Cr:YSGG laser irradiation in primary teeth. J Dent Child. 2008;75:151–7.

    Google Scholar 

  128. Ghandehari M, Mighani G, Shahabi S, Chiniforush N, Shirmohammadi Z. Comparison of microleakage of glass ionomer restoration in primary teeth prepared by Er: YAG laser and the conventional method. J Dent (Tehran). 2012;9:215–20.

    Google Scholar 

  129. Baghalian A, Nakhjavani YB, Hooshmand T, Motahhary P, Bahramian H. Microleakage of Er:YAG laser and dental bur prepared cavities in primary teeth restored with different adhesive restorative materials. Lasers Med Sci. 2013;28:1453–60.

    Article  PubMed  Google Scholar 

  130. Juntavee A, Juntavee N, Peerapattana J, Nualkaew N, Sutthisawat S. Comparison of Marginal Microleakage of Glass Ionomer Restorations in Primary Molars Prepared by Chemo-mechanical Caries Removal (CMCR), Erbium: Yttrium Aluminum-Garnet (Er:YAG) Laser and Atraumatic Restorative Technique (ART). Int J Clin Pediatr Dent. 2013;6:75–9.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Bahrololoomi Z, Razavi F, Soleymani AA. Comparison of micro-leakage from resin-modified glass ionomer restorations in cavities prepared by Er:YAG (erbium-doped yttrium aluminum garnet) laser and conventional method in primary teeth. J Lasers Med Sci. 2014;5:183–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roeland De Moor DDS, PhD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Moor, R., Delmé, K., Keulemans, F. (2015). Adhesion and Erbium-Lased Enamel and Dentin. In: Olivi, G., Olivi, M. (eds) Lasers in Restorative Dentistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47317-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47317-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47316-0

  • Online ISBN: 978-3-662-47317-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics